SalGAN: Visual saliency prediction with generative adversarial networks

简介: SalGAN: Visual saliency prediction with generative adversarial networks2017-03-17   摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。

 

SalGAN: Visual saliency prediction with generative adversarial networks

2017-03-17

 

  摘要:本文引入了对抗网络的对抗训练机制来进行显著性物体的预测。虽然我们老板很不喜欢显著性,但是,做显著性检测的人还是会说:这是有意义的。如本文说的:恩,显著性可以作为 soft-attention,来引导其他计算机视觉任务的进行,也可以直接引导 marketing 领域。

  本文区别于其他方法最显著的地方在于:the usage of generatvie adversarial networks。本文将训练分为两个阶段:

    1. 产生器产生一个服从训练集合的伪造的样本;

    2. 判别器就是用于判断给定的样本是 真实的 还是 伪造的。

  本文中谈到的 data distribution 意思是:实际的图像 和 对应的显著性图。

    本文总结的贡献点是:

    1. 探索了 GAN 在显著性物体检测上的应用,在某些数据集上取得了不错的效果;

    2. 在训练 DCNN 时,应用 二元交叉熵损失函数 和 下采样显著性图 是可以提升效果的。

 

  本文的网络框架设计如图所示:

  

 

  网络结构分析:

  1. 产生器:
    Convolutional encoder-decoder architecture 

  2. 判别器:

    就是一个 CNN 结构。

  

  训练(Training):

  1. Content Loss 

    由于 产生器 部分的输出是 saliency map,要计算的这部分就是:输出的 saliency map 和 gt saliency map 之间均方差 loss 。 

    用的就是 两个 map 之间的欧式距离:

    

    本文中 MSE 就是用来作为 baseline 的,因为大部分显著性检测的方法都是基于这个 loss function。GT saliency maps 被归一化到 0-1 之间。

    这里用到了 二元交叉熵损失函数:

    

  2. 对抗损失

    关于 GAN 这里就不在介绍了,那么显著性检测和 gan 有什么不同呢?

    1. 首先,目标是拟合一个 决策函数 来产生实际的 saliency values,而不是从随机的 noise 中得到 真实的图像;

        这样的话,输入给产生器的东西就不再是 随机的 noise,而是一张图像;

    2. 其次,显著性所对应的图 是衡量质量的;

        所以我们将图像和 saliency map 作为输入给产生器

    3. 最后,在 GAN 产生图像的时候,没有 gt 进行对比,属于无监督学习;

        但是,在显著性检测的时候,我们是有现有的 gt 作为对比的。

    

  我们发现产生器函数更新的时候,我们发现 利用判别器的loss 和 对比gt得到的交叉熵损失函数,可以显著地提升对抗训练的稳定性和收敛速度。

  最终的 loss function 可以定义为:

  

  


  实验结果:

    

 

 

相关文章
|
4月前
|
机器学习/深度学习 算法
生成对抗网络(Generative Adversarial Networks,简称GANs)
生成对抗网络(GANs)由Ian Goodfellow等人于2014年提出,是一种通过生成器和判别器的对抗训练生成逼真数据样本的深度学习模型。生成器创造数据,判别器评估真实性,两者相互竞争优化,广泛应用于图像生成、数据增强等领域。
301 1
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
本文探讨了使用复数卷积神经网络进行MRI图像重建的方法,强调了复数网络在保留相位信息和减少参数数量方面的优势,并通过实验分析了不同的复数激活函数、网络宽度、深度以及结构对模型性能的影响,得出复数模型在MRI重建任务中相对于实数模型具有更优性能的结论。
76 0
【文献学习】Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
|
机器学习/深度学习 存储 人工智能
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
122 0
【文本分类】Recurrent Convolutional Neural Networks for Text Classification
|
机器学习/深度学习 自然语言处理 算法
【文本分类】Convolutional Neural Networks for Sentence Classification
【文本分类】Convolutional Neural Networks for Sentence Classification
119 0
【文本分类】Convolutional Neural Networks for Sentence Classification
|
机器学习/深度学习 存储 编解码
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(上)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(上)
|
机器学习/深度学习 编解码 固态存储
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
【论文泛读】轻量化之MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(下)
|
机器学习/深度学习 数据挖掘 计算机视觉
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章(一)
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章(一)
|
机器学习/深度学习 数据挖掘 Java
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章(二)
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章
|
机器学习/深度学习 数据挖掘 计算机视觉
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章(三)
CV:翻译并解读2019《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》第四章