开源中文分词框架分词效果对比smartcn与IKanalyzer

简介:

一、引言:

  中文分词一直是自然语言处理的一个痛处,早在08年的时候,就曾经有项目涉及到相关的应用(Lunce构建全文搜索引擎),那时的痛,没想到5年后的今天依然存在,切分效果、扩展支持、业务应用等方面依然不甚理想。收费的版本不提了,原因自不必言表,开源版本中,发现之前曾经活跃的版本,大多已经没落(好几年没更新了),存活下来的寥寥无几。我是一个守旧的人,评估版本的选择有些保守,至少目前为止,只看1.0正式版本之后的版本,0.XX的不在考虑范围之内,用了一个周末的时间,对比了十多款的样子,个人感觉源于中科院ICTCLAS的smartcn和IKAnanlyzer效果还是不错的。

二、结果对比

2.1 原始文本

"lucene\分析器\使用\分词器\和\过滤器\构成\一个\“管道”,文本\在\流经\这个\管道\后\成为\可以\进入\索引\的\最小单位,因此,一个\标准\的分析器有两个部分组成,一个是分词器tokenizer,它用于将文本按照规则切分为一个个可以进入索引的最小单位。另外一个是TokenFilter,它主要作用是对切出来的词进行进一步的处理(如去掉敏感词、英文大小写转换、单复数处理)等。lucene中的Tokenstram方法首先创建一个tokenizer对象处理Reader对象中的流式文本,然后利用TokenFilter对输出流进行过滤处理";
2.2 smartcn

lucen\分析器\使用\分词\器\和\过滤器\构成\一个\管道\文本\流经\这个\管道\后\成为\可以\进入\索引\最\小\单位\因此\一个\标准\分析器\有\两\个\部分\组成\一个\分词\器\token\它\用于\将\文本\按照\规则\切分\为\一个\个\可以\进入\索引\最\小\单位\另外\一个\tokenfilt\它\主要\作用\对\切\出来\词\进行\进一步\处理\如\去掉\敏感\词\英文\大小写\转换\单\复数\处理\等\lucen\中\tokenstram\方法\首先\创建\一\个\token\对象\处理\reader\对象\中\式\文本\然后\利用\tokenfilt\对\输出\进行\过滤\处理\

2.3 IKanalyzer

lucene\分析器\分析\器使\使用\分词器\分词\器\和\过滤器\过滤\滤器\构成\一个\一\个\管道\文本\在\流经\这个\管道\后\成为\可以\进入\索引\的\最小\单位\因此\一个\一\个\标准\的\分析器\分析\器\有\两个\两\个\部分\分组\组成\一个是\一个\一\个\是\分词器\分词\器\tokenizer\它用\用于\将\文本\按照\规则\切分\切\分为\一个个\一个\一\个个\个\个\可以\进入\索引\的\最小\单位\另外\一个是\一个\一\个\是\tokenfilter\它\主要\作用\用是\对\切出来\切出\切\出来\的\词\进行\行进\进一步\进一\一步\一\步\的\处理\如\去掉\敏感\词\英文\大小写\大小\小写\转换\单\复数\处理\等\lucene\中\的\tokenstram\方法\首先\创建\一个\一\个\tokenizer\对象\处理\reader\对象\中\的\流式\文本\然后\利用\tokenfilter\对\输出\流进\进行\过滤\处理\

三、smartcn示例程序


package dictTest;

import java.util.Iterator;

import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.cn.smart.SmartChineseAnalyzer;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.util.CharArraySet;
import org.apache.lucene.util.Version;

public class SmartChineseAnalyzerTest {

    public static void main(String[] args) {
        try {
            // 要处理的文本
            String text = "lucene分析器使用分词器和过滤器构成一个“管道”,文本在流经这个管道后成为可以进入索引的最小单位,因此,一个标准的分析器有两个部分组成,一个是分词器tokenizer,它用于将文本按照规则切分为一个个可以进入索引的最小单位。另外一个是TokenFilter,它主要作用是对切出来的词进行进一步的处理(如去掉敏感词、英文大小写转换、单复数处理)等。lucene中的Tokenstram方法首先创建一个tokenizer对象处理Reader对象中的流式文本,然后利用TokenFilter对输出流进行过滤处理";
            //String text = "目前我已经用了lucene4.0,虽然是alpha版,但是也是未来的第一步。但是IKAnalyzer不支持lucene4,如果作者在,是否有计划对4支持?何时支持?";
            // 自定义停用词
            String[] self_stop_words = { "的", "在","了", "呢", ",", "0", ":", ",", "是", "流" };
            CharArraySet cas = new CharArraySet(Version.LUCENE_46, 0, true);
            for (int i = 0; i < self_stop_words.length; i++) {
                cas.add(self_stop_words[i]);
            }

            // 加入系统默认停用词
            Iterator<Object> itor = SmartChineseAnalyzer.getDefaultStopSet().iterator();
            while (itor.hasNext()) {
                cas.add(itor.next());
            }
            

            // 中英文混合分词器(其他几个分词器对中文的分析都不行)
            SmartChineseAnalyzer sca = new SmartChineseAnalyzer(Version.LUCENE_46, cas);

            TokenStream ts = sca.tokenStream("field", text);
            CharTermAttribute ch = ts.addAttribute(CharTermAttribute.class);

            ts.reset();
            while (ts.incrementToken()) {
                System.out.print(ch.toString()+"\\");
            }
            ts.end();
            ts.close();
        } catch (Exception ex) {
            ex.printStackTrace();
        }
    }

}

四、IKanalyzer示例程序


package dictTest;

import org.wltea.analyzer.*;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.wltea.analyzer.lucene.*;

public class IKAnalyzerTest {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Analyzer ik  = new IKAnalyzer();
        try{
            String text = "lucene分析器使用分词器和过滤器构成一个“管道”,文本在流经这个管道后成为可以进入索引的最小单位,因此,一个标准的分析器有两个部分组成,一个是分词器tokenizer,它用于将文本按照规则切分为一个个可以进入索引的最小单位。另外一个是TokenFilter,它主要作用是对切出来的词进行进一步的处理(如去掉敏感词、英文大小写转换、单复数处理)等。lucene中的Tokenstram方法首先创建一个tokenizer对象处理Reader对象中的流式文本,然后利用TokenFilter对输出流进行过滤处理";
            TokenStream ts = ik.tokenStream("field", text);
            
            CharTermAttribute ch = ts.addAttribute(CharTermAttribute.class);

            ts.reset();
            while (ts.incrementToken()) {
                //System.out.println(ch.toString());
                System.out.print(ch.toString() + "\\");
            }
            ts.end();
            ts.close();
            
        } catch (Exception ex) {
            ex.printStackTrace();
        }    
        
    }
}

五、结论

1.二者分词效果,相比其他已经不错,都值得肯定;

2.smartcn为Lucene4.6版本自带(之前版本也有),中文分词不错,英文分词有问题,Lucene分词后变成了Luncn;

3.IKAnalyzer分词后的碎片太多,可以和人工分析效果做对比;

4.从自定义词库的角度考虑,因为smartcn在Lucene4.6中的版本,目前不支持自定义词库,成为致命缺陷,只能放弃。


目录
相关文章
|
10月前
|
自然语言处理 BI
|
12月前
|
自然语言处理 安全 关系型数据库
白话Elasticsearch30-IK中文分词之热更新IK词库
白话Elasticsearch30-IK中文分词之热更新IK词库
134 0
|
自然语言处理
HanLP分词工具中的ViterbiSegment分词流程
本篇文章将重点讲解HanLP的ViterbiSegment分词器类,而不涉及感知机和条件随机场分词器,也不涉及基于字的分词器。因为这些分词器都不是我们在实践中常用的,而且ViterbiSegment也是作者直接封装到HanLP类中的分词器,作者也推荐使用该分词器,同时文本分类包以及其他一些自然语言处理任务包中的分词器也都间接使用了ViterbiSegment分词器。
1069 0
|
自然语言处理
IKAnalyzer - 轻量级的中文分词工具
采用了特有的“正向迭代最细粒度切分算法“,具有60万字/秒的高速处理能力。 采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。
1150 0
|
自然语言处理 搜索推荐 索引
基于hanlp的es分词插件
摘要:elasticsearch是使用比较广泛的分布式搜索引擎,es提供了一个的单字分词工具,还有一个分词插件ik使用比较广泛,hanlp是一个自然语言处理包,能更好的根据上下文的语义,人名,地名,组织机构名等来切分词Elasticsearch默认分词 输出: IK分词 输出: hanlp...
1480 0
|
自然语言处理
Ansj与hanlp分词工具对比
一、Ansj1、利用DicAnalysis可以自定义词库: 2、但是自定义词库存在局限性,导致有些情况无效:比如:“不好用“的正常分词结果:“不好,用”。 (1)当自定义词库”好用“时,词库无效,分词结果不变。
1070 0
|
自然语言处理 Java Maven
HanLP中文分词Lucene插件
基于HanLP,支持包括Solr(7.x)在内的任何基于Lucene(7.x)的系统。
1974 0
|
自然语言处理 算法 测试技术
分词工具Hanlp基于感知机的中文分词框架
结构化感知机标注框架是一套利用感知机做序列标注任务,并且应用到中文分词、词性标注与命名实体识别这三个问题的完整在线学习框架,该框架利用
2048 0
|
自然语言处理 搜索推荐 Java
Hanlp等七种优秀的开源中文分词库推荐
中文分词是中文文本处理的基础步骤,也是中文人机自然语言交互的基础模块。由于中文句子中没有词的界限,因此在进行中文自然语言处理时,通常需要先进行分词。
3770 0
|
自然语言处理 Linux
中文分词工具比较
五款中文分词工具的比较,尝试的有jieba,SnowNLP,thulac(清华大学自然语言处理与社会人文计算实验室),StanfordCoreNLP,pyltp(哈工大语言云),环境是Win10,anaconda3.
5018 0