$L^p$ 调和函数恒为零

简介: 设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}

设 $u$ 是 $\bbR^n$ 上的调和函数, 且 $$\bex \sen{u}_{L^p}=\sex{\int_{\bbR^n}|u(y)|^p\rd y}^{1/p}<\infty. \eex$$ 试证: $u\equiv 0$. 证明:  由 $$\beex \bea \sev{u(x)}&=\sev{\frac{1}{\omega_n R^n}\int_{B_R(x)}u(y)\rd y}\quad\sex{\omega_n:\ \bbR^n\mbox{ 中单位球体积, 平均值定理}}\\ &\leq \frac{1}{\omega_n R^n} \sex{\int_{B_R(x)}|u(y)|^p\rd y}^{1/p} \cdot\sex{\int_{B_R(x)}1^\frac{p}{p-1}\rd y}^{1-1/p}\quad\sex{\mbox{H\"older 不等式}}\\ &\leq\frac{\sen{u}_{L^p}}{\sex{\omega_nR^n}^{1/p}}\\ &\to0\quad\sex{R\to\infty} \eea \eeex$$ 即知结论.  

目录
相关文章
|
4月前
【C language】判断一个正整数是否是2^n
【C language】判断一个正整数是否是2^n
|
2月前
学习使用按位异或 ^
学习使用按位异或 ^。
36 9
|
7月前
2^x modn=1
2^x modn=1
34 0
|
算法 C++
|
算法
a^b(快速幂)
题目: 求 a 的 b 次方对 p 取模的值。 输入格式: 三个整数 a,b,p ,在同一行用空格隔开。 输出格式: 输出一个整数,表示a^b mod p的值。
83 0
|
算法 搜索推荐
算法之n^2的三个算法总结
算法是真的应该好好研究研究,且让容我来水一水
135 0
(1+2+...+100)+(1^2+2^2+...+50^2)+(1/1+1/2+...+1/10)
(1+2+...+100)+(1^2+2^2+...+50^2)+(1/1+1/2+...+1/10)
HDOJ 1395 2^x mod n = 1
HDOJ 1395 2^x mod n = 1
97 0
HDOJ 2035 人见人爱A^B
HDOJ 2035 人见人爱A^B
137 0