Blktrace原理简介及使用

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Blktrace简介 Blktrace是一个用户态的工具,用来收集磁盘IO信息中当IO进行到块设备层(block层,所以叫blk trace)时的详细信息(如IO请求提交,入队,合并,完成等等一些列的信息)。
Blktrace简介

Blktrace是一个用户态的工具,用来收集磁盘IO信息中当IO进行到块设备层(block层,所以叫blk trace)时的详细信息(如IO请求提交,入队,合并,完成等等一些列的信息)。

 

块设备层处于下图(借用褚霸的图)中的 block layer

 

 
Blktrace工作原理

 

(1)     blktrace测试的时候,会分配物理机上逻辑cpu个数个线程,并且每一个线程绑定一个逻辑cpu来收集数据

(2)     blktracedebugfs挂载的路径(默认是/sys/kernel/debug )下每个线程产生一个文件(就有了对应的文件描述符),然后调用ioctl函数(携带文件描述符, _IOWR(0x12,115,struct blk_user_trace_setup)& blk_user_trace_setup三个参数),产生系统调用将这些东西给内核去调用相应函数来处理,由内核经由debugfs文件系统往此文件描述符写入数据

(3)     blktrace需要结合blkparse来使用,由blkparse来解析blktrace产生的特定格式的二进制数据

(4)     blkparse仅打开blktrace产生的文件,从文件里面取数据做展示以及最后做per cpu的统计输出,但blkparse中展示的数据状态(如 A,U,Q,详细见下)是blkparset->action & 0xffff之后自己把数值转换为“AQU之类的状态”来展示的。

 

Blktrace安装

1.       yum install blktrace

2.       源码获取(你也可以从源码安装)

git clone git://git.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git bt

cd bt

make

make install

 

Blktrace的使用
 
Debugfs挂载

    由之前的blktrace工作原理可知,blktrace需要借助内核经由debugfs文件系统(debugfs文件系统在内存中)来输出信息

 

所以用blktrace工具之前需要先挂载debugfs文件系统

mount      –t debugfs    debugfs /sys/kernel/debug

 

或者在/etc/fstab中添加下面一行以便在开机启动的时候自动挂载

debug      /sys/kernel/debug           debugfs    default     0       0

 

blktrace具体的磁盘或分区

blktrace具体语法man blktrace,这里讲常用的

 

文件输出

mkdir test  #blktrace生成的数据默认会在当前目录,如之前在blktrace原理中提到,每个逻辑cpu都有一个线程,产生一个文件,故会产生cpu数目个文件

blktrace –d /dev/sda –o test1

# /dev/sdatrace,输出文件名为test1. Blktrace.[0-cpu-1]   (文件里面存的是二进制数据,需要blkparse来解析)

 

终端输出

Blktrace –d /dev/sda –o - |blkparse  -i –

输出到终端用“-”表示,可是都是一堆二进制东西,没法看,所以需要实时blkparse来解析

Blkparse 的“-i”后加文件名,blktrace输出为“-“代表终端(代码里面写死了,就是用这个符号来代表终端),blkparse也用“-”来代表终端解析

 

blkparse解析blktrace产生的数据

blkparse具体语法man blkparse,这里讲常用的

 

文件解析

blkparse  -i    test1 #test1.blktrace. [0-cpu-1]都解析(只统计有数据的),

 

实时解析

实时数据的解析即上blktrace的“终端输出”

 

使用实例

终端1

blktrace /dev/sda -o - |blkparse -i – 跑着

终端2

dd if=/dev/zero of=/root/a1 bs=4k count=1000

 

终端1显示

8,0   16     3041    94.435078912   891  A   W 72411584 + 8 <- (8,2) 71884224

8,0   16     3042    94.435079691   891  Q   W 72411584 + 8 [flush-8:0]

8,0   16     3043    94.435080790   891  M   W 72411584 + 8 [flush-8:0]

8,0   16     3044    94.435083089   891  A   W 72411592 + 8 <- (8,2) 71884232

 

输出解析

这是默认输出格式,代码里默认输出格式为,再按action输出或不输出后续信息

 

先输出   –f "%D %2c %8s %5T.%9t %5p %2a %3d " 
 

其中每个字母代表意思如下,数字代表占几个字符,和printf里的数字输出一样的

 

8,0   16     3042    94.435079691   891  Q   W 72411584 + 8 [flush-8:0]

由于默认格式为先输出–f "%D %2c %8s %5T.%9t %5p %2a %3d "

18,0 按默认输出对应%D,主从设备号

216 按默认输出对应%2c,表示cpu id

33042 按默认输出对应%8s,表示序列号(序列号是blkparse自己产生的一个序号,实际IO里没有这个号)

494.435079691 按默认对应%5T.%9t,表示.纳秒

5891对应%5p,表示,进程id

6Q对应%2a,表示ActionAction表格如下(如Q表示IO handled by request queue code),更详细的含义见附录action

The following table shows the various actions which may be output.              

Act Description

A IO was remapped to a different device

B IO bounced

C IO completion

D IO issued to driver

F IO front merged with request on queue

G Get request

I IO inserted onto request queue

M IO back merged with request on queue

P Plug request

Q IO handled by request queue code

S Sleep request

T Unplug due to timeout

U Unplug request

X Split

7对应%3d,表示RWBS域(W表示写操作),各字母含义如下

         至少包含“RWD“( R 读,W写,D块被忽略)中的1个字符

         还可以附加“BS“(B barrierS同步)

 

再输出(源代码里面这么写的)

switch (act[0]) {

         case 'R':   /* Requeue */

         case 'C': /* Complete */

                   if (t->action & BLK_TC_ACT(BLK_TC_PC)) {

                            char *p = dump_pdu(pdu_buf, pdu_len);

                            if (p)

                                     fprintf(ofp, "(%s) ", p);

                            fprintf(ofp, "[%d]n", t->error);

                   } else {

                            if (elapsed != -1ULL) {

                                     if (t_sec(t))

                                               fprintf(ofp, "%llu + %u (%8llu) [%d]n",

                                                        (unsigned long long) t->sector,

                                                        t_sec(t), elapsed, t->error);

                                     else

                                               fprintf(ofp, "%llu (%8llu) [%d]n",

                                                        (unsigned long long) t->sector,

                                                        elapsed, t->error);

                            } else {

                                     if (t_sec(t))

                                               fprintf(ofp, "%llu + %u [%d]n",

                                                        (unsigned long long) t->sector,

                                                        t_sec(t), t->error);

                                     else

                                               fprintf(ofp, "%llu [%d]n",

                                                        (unsigned long long) t->sector,

                                                        t->error);

                            }

                   }

                   break;

 

         case 'D':           /* Issue */

         case 'I':   /* Insert */

         case 'Q':           /* Queue */

         case 'B':   /* Bounce */

                   if (t->action & BLK_TC_ACT(BLK_TC_PC)) {

                            char *p;

                            fprintf(ofp, "%u ", t->bytes);

                            p = dump_pdu(pdu_buf, pdu_len);

                            if (p)

                                     fprintf(ofp, "(%s) ", p);

                            fprintf(ofp, "[%s]n", name);

                   } else {

                            if (elapsed != -1ULL) {

                                     if (t_sec(t))

                                               fprintf(ofp, "%llu + %u (%8llu) [%s]n",

                                                        (unsigned long long) t->sector,

                                                        t_sec(t), elapsed, name);

                                     else

                                               fprintf(ofp, "(%8llu) [%s]n", elapsed,

                                                        name);

                            } else {

                                     if (t_sec(t))

                                               fprintf(ofp, "%llu + %u [%s]n",

                                                        (unsigned long long) t->sector,

                                                        t_sec(t), name);

                                     else

                                               fprintf(ofp, "[%s]n", name);

                            }

                   }

                   break;

 

         case 'M':  /* Back merge */

         case 'F':    /* Front merge */

         case 'G':   /* Get request */

         case 'S':    /* Sleep request */

                   if (t_sec(t))

                            fprintf(ofp, "%llu + %u [%s]n",

                                     (unsigned long long) t->sector, t_sec(t), name);

                   else

                            fprintf(ofp, "[%s]n", name);

                   break;

 

         case 'P':   /* Plug */

                   fprintf(ofp, "[%s]n", name);

                   break;

 

         case 'U':   /* Unplug IO */

         case 'T': /* Unplug timer */

                   fprintf(ofp, "[%s] %un", name, get_pdu_int(t));

                   break;

 

         case 'A': /* remap */

                   get_pdu_remap(t, &r);

                   fprintf(ofp, "%llu + %u <- (%d,%d) %llun",

                            (unsigned long long) t->sector, t_sec(t),

                            MAJOR(r.device_from), MINOR(r.device_from),

                            (unsigned long long) r.sector_from);

                   break;

 

         case 'X': /* Split */

                   fprintf(ofp, "%llu / %u [%s]n", (unsigned long long) t->sector,

                            get_pdu_int(t), name);

                   break;

 

         case 'm':  /* Message */

                   fprintf(ofp, "%*sn", pdu_len, pdu_buf);

                   break;

 

         default:

                   fprintf(stderr, "Unknown action %cn", act[0]);

                   break;

         }

所以

 

具体解析

8,0   16     3042    94.435079691   891  Q   W 72411584 + 8 [flush-8:0]

中的act[0]=’Q’,后面的72411584是(80sda)相对8:0的扇区起始号,+8,为后面连续的8个扇区(默认一个扇区512byte,所以8个扇区就是4K),后面的[flush-8:0]是程序的名字。

 

8,0   16     3041    94.435078912   891  A   W 72411584 + 8 <- (8,2) 71884224

Action[0]=’A’, 72411584是相对8:0(即sda)的起始扇区号,(8,2)是相对/dev/sda2分区的扇区号为71884224(由于/dev/sda2分区时sda磁盘上面的一个分区,故sda2上面的起始位置要先映射到sda磁盘上面去)

 

由于扇区号在磁盘上面是连续的,磁盘又被格式化成很多块,一个块里包含多个扇区,所以,扇区号/块大小=块号,

根据块号你就可以找到对应的inode

debugfs -R 'icheck  块号'  具体磁盘或分区

如你的扇区号是相对sda2上面算出来的块号,那debugfs –R ‘icheck 块号’ /dev/sda2就可以找到对应的inode

 

根据inode你就可以找到对应的文件是什么了
find / -inum your_inode

 

有一个例子见淘宝牛人写的一篇链接地址

 

附录:action含义

C – complete A previously issued request has been completed. The output

will detail the sector and size of that request, as well as the success or

failure of it.

 

D – issued A request that previously resided on the block layer queue or in

the io scheduler has been sent to the driver.

 

I – inserted A request is being sent to the io scheduler for addition to the

internal queue and later service by the driver. The request is fully formed

at this time.

 

Q – queued This notes intent to queue io at the given location. No real requests

exists yet.

 

B – bounced The data pages attached to this bio are not reachable by the

hardware and must be bounced to a lower memory location. This causes

a big slowdown in io performance, since the data must be copied to/from

kernel buffers. Usually this can be fixed with using better hardware -

either a better io controller, or a platform with an IOMMU.

 

m – message Text message generated via kernel call to blk add trace msg.

 

M – back merge A previously inserted request exists that ends on the boundary

of where this io begins, so the io scheduler can merge them together.

 

F – front merge Same as the back merge, except this io ends where a previously

inserted requests starts.

 

G – get request To send any type of request to a block device, a struct request

container must be allocated first.

 

S – sleep No available request structures were available, so the issuer has to

wait for one to be freed.

 

P – plug When io is queued to a previously empty block device queue, Linux

will plug the queue in anticipation of future ios being added before this

data is needed.

 

U – unplug Some request data already queued in the device, start sending

requests to the driver. This may happen automatically if a timeout period

has passed (see next entry) or if a number of requests have been added to

the queue.

 

T – unplug due to timer If nobody requests the io that was queued after

plugging the queue, Linux will automatically unplug it after a defined

period has passed.

 

X – split On raid or device mapper setups, an incoming io may straddle a

device or internal zone and needs to be chopped up into smaller pieces

for service. This may indicate a performance problem due to a bad setup

of that raid/dm device, but may also just be part of normal boundary

conditions. dm is notably bad at this and will clone lots of io.

 

A – remap For stacked devices, incoming io is remapped to device below it in

the io stack. The remap action details what exactly is being remapped to

what.

外带一张图,可能看得更清楚

相关文章
|
XML 安全 网络协议
netconf简介
netconf简要
|
网络协议 Java
JavaRPC原理与实现简介
远程过程调用(Remote Procedure Call,简称RPC)是一种计算机通信协议,它允许在不同的进程之间进行通信,就像在本地调用一样。JavaRPC是基于Java语言实现的一种RPC框架,旨在简化分布式系统的开发和管理。
189 0
|
XML 监控 Devops
CUNIT简介
CUNIT简介
483 0
CUNIT简介
|
并行计算 API 调度
TOPI 简介
TOPI 简介
189 0
|
API C++
exosip 和 pjsip 简介
oSIP  oSIP的开发开始于2000年7月,第一个版本在2001年5月发 布,到现在已经发展到3.x了。它采用ANSI C编写,而且结 构简单小巧,所以速度特别快,它并不提供高层的SIP会话 控制API,它主要提供一些解析SIP/SDP消息的API和事务处理 的状态机,oSIP的作者还开发了基于oSIP的UA lib:exosip和 proxy server lib:partysip.
4004 0
|
Kubernetes 负载均衡 应用服务中间件
K8S原理简介及环境搭建(三)
K8S原理简介及环境搭建
194 0
K8S原理简介及环境搭建(三)
|
Kubernetes 开发工具 git
K8S原理简介及环境搭建(四)
K8S原理简介及环境搭建
260 0
K8S原理简介及环境搭建(四)
|
Kubernetes 负载均衡 网络协议
K8S原理简介及环境搭建(一)
K8S原理简介及环境搭建
317 0
K8S原理简介及环境搭建(一)
|
Kubernetes 安全 SDN
K8S原理简介及环境搭建(二)
K8S原理简介及环境搭建
158 0
K8S原理简介及环境搭建(二)
|
XML 分布式计算 算法
Rosetta | Rosetta简介
Rosetta | Rosetta简介
939 0
Rosetta | Rosetta简介