有道难题第二题最新算法(不仅仅是速度)

简介: 最近好像算法问题又不热门了,米关系,自己喜欢就好。我的有道第二题不是双倍超立方,也不知道是什么算法,大概的题目意思,大家可以参考:“我的有道第二题(不是双倍超立方)”   其实一开始我觉得很简单,我写的第一个解法也是正确的,不过讨厌在题目说,输入的n可以为2,000,000,000。

最近好像算法问题又不热门了,米关系,自己喜欢就好。我的有道第二题不是双倍超立方,也不知道是什么算法,大概的题目意思,大家可以参考:“我的有道第二题(不是双倍超立方)

 

其实一开始我觉得很简单,我写的第一个解法也是正确的,不过讨厌在题目说,输入的n可以为2,000,000,000。 20亿。。。。。如果N为最大的时候,不用看了,我的解法直接out,第一时间很长,第二,直接out of Memory

 

那该怎么做呢???我寻思着它的规律,其实一直有种感觉,可一直把握不住,而且平时也没什么时间静下来,不过老留着这个问题,我一直睡不着觉,所以还是找了时间找了一下规律。我把n设为16,因为16已经足够让我们看出规律了,如果再小,这个规律也很难让我们立足。按照我第一次的解法,打印 n=16 的拼接字符串 A:

01
0110
01101010
0110101010100010
01101010101000101010001011100010

这是 n=16 时,每次循环所打印出的字符,由此我们看出,我们的循环次数为:Log2(N+1),这个不是重点,我们要找的是规律,可以看出,2的n次幂位,也就是A(2 ^ n) 一定是1,这是为什么呢?稍后说。

再来说说完全平方数:根据定义,一个数n 如果 等于 i * i 那我们就认定n为完全平方数。i<=n

按照题目,如果index 是完全平方数,则 B[index] = 1 - A[index]  ,从题目来看,其实也就是取反 0 -> 1   1->0

接着上面的来说,为什么A(2 ^ n) 一定是1呢?我们知道,每次循环的时候,A  = A + B

B是根据A的每位判断是否是完全平方数而决定的,且A的长度也是有规律的 2 ^ n 位,所以,2 ^ n 位 其实就是对A[0] 的一个判断

根据完全平方数定义, 因为 0 = 0 * 0  所以它是一个完全平方数

B[0] = 1 - A[0] = 1 - 0 = 1

这就是为什么2 ^ n 一定是1的原因了。

接下来,我们分析其他位数的规则。

其实一开始我也很迷茫,因为想到了重点,但始终捉不到它,越是如此,我越是痴迷,毕竟没学过算法,也不知道数据结构,只能慢慢的自己找寻答案,现在已经懊悔当初的年少轻狂了。

我们再看下 (2 ^ n )+ 1 位,你会发现,始终是0,按照上面的证明,我们知道,(2^n) + 1始终是对A[1]的一个判断。

1 = 1 * 1

所以 1 是完全平方数,也就是对 A[1] 的一次取反操作,而1 = 2 ^ 0  所以 A[1] = 1 所以 A[(2^n) + 1] = 0

好了,到这里大家是否已经看出点规则了呢?我稍微写一下,因为我也不是很懂,只能写个大概

A[n] = IsSqrt(A[n - 2 ^ (log2(n)]) ? 1- A[n - 2 ^ (log2(n)] : A[n - 2 ^ (log2(n)]

 

IsSqrt方法,是判断这个数是否是完全平方数,代码如下:

public bool IsSqrt(double n)
{
return Math.Sqrt(n).Equals(Math.Truncate(Math.Sqrt(n)));
}

可以看出,它是判断OldA(循环前的A)相对应位数的一个判断,那我们是不是也要进行log2(n+1)次循环吗?当然不需要,可以看出,如果是前几位的话,我们只需要循环到前几位的log2n就可以了,或许说得很朦胧,简单说下,

当n=16的时候,我们需要判断的是上一次A的第0位(16 - 2 ^ (floor(log2 16))) = 0

而0其实在每次循环中,都会是取A[0]的一个判断,所以我们只要判断 包含此位数的最小XXX (不知道怎么说)

我们只需要得到 log2(index) 次的循环就可以了。废话了这么多,我表达比较差,还是看我写的代码吧,我写了2种,意义是一样的,只不过一种用了递归,一种没有用而已。

        public int GetValues(int n)
{
if (getValue(n))
return 1;
else
return 0;
}
public bool getValue(double n)
{
double baseN = Math.Floor(Math.Log(n, 2));
double index = n - Math.Pow(2, baseN);
if (index == 0) return true;
bool isSquer = IsSqrt(index);
return isSquer ^ getValue(index);
}
 

上面是递归的做法,下面是没有递归的做法:

        public int GetValues(int n)
{
double baseN = Math.Floor(Math.Log(n, 2));
bool isSqrt = true;
double index = n - Math.Pow(2, baseN);
while (index > 0)
{
isSqrt = isSqrt ^ IsSqrt(index);
index = index - Math.Pow(2, Math.Floor(Math.Log(index, 2)));
}
return isSqrt ? 1 : 0;
}
 

两者其实是一个意思,大家可以自己理解一下我的意思吧,哈哈。

 

我知道应该还有更好的做法,比如位移,但我的能力有限,只能做到这里了,最后看下在n = 2,000,000,000 的性能吧。

image

 

额。。。。。不递归的情况下,竟然快了1个数量级。。。。。

 

我这个算法,真的没什么科学依据,也希望高手能指点一下,给出一个公式之类或者证明之类的,也可以给出新的好的算法。

相关文章
|
2天前
|
云安全 数据采集 人工智能
古茗联名引爆全网,阿里云三层防护助力对抗黑产
阿里云三层校验+风险识别,为古茗每一杯奶茶保驾护航!
古茗联名引爆全网,阿里云三层防护助力对抗黑产
|
6天前
|
人工智能 中间件 API
AutoGen for .NET - 架构学习指南
《AutoGen for .NET 架构学习指南》系统解析微软多智能体框架,涵盖新旧双架构、核心设计、技术栈与实战路径,助你从入门到精通,构建分布式AI协同系统。
305 142
|
2天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
404 0
|
3天前
|
传感器 人工智能 算法
数字孪生智慧水务系统,三维立体平台,沃思智能
智慧水务系统融合物联网、数字孪生与AI技术,实现供水全流程智能监测、预测性维护与动态优化。通过实时数据采集与三维建模,提升漏损控制、节能降耗与应急响应能力,推动水务管理从经验驱动迈向数据驱动,助力城市水资源精细化、可持续化管理。
267 142
|
2天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
204 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
17天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
2天前
|
机器学习/深度学习 人工智能 运维
智能照明稳压节能控制器,路灯节能稳压系统,沃思智能
智能照明调控柜集电力分配、远程控制与能耗管理于一体,支持自动调光、场景切换与云平台运维,广泛应用于市政、商业及工业领域,显著节能降耗,助力智慧城市建设。
184 137
kde
|
2天前
|
人工智能 关系型数据库 PostgreSQL
n8n Docker 部署手册
n8n是一款开源工作流自动化平台,支持低代码与可编程模式,集成400+服务节点,原生支持AI与API连接,可自托管部署,助力团队构建安全高效的自动化流程。
kde
263 3

热门文章

最新文章