ESFramework介绍之(21)-- Tcp组件接口ITcp介绍

简介: 写了这么多篇介绍ESFramework的文章才想起来还有一些很基础的内容没有介绍,前面介绍的一些组件、框架基本上是与协议无关的(比如无论是Tcp还是Udp甚至是Remoting、WebService都可以通用),然而到了应用的最底层,我们总需要选择一种通信协议,.
        写了这么多篇介绍ESFramework的文章才想起来还有一些很基础的内容没有介绍,前面介绍的一些组件、框架基本上是与协议无关的(比如无论是Tcp还是Udp甚至是Remoting、WebService都可以通用),然而到了应用的最底层,我们总需要选择一种通信协议,.net Framework对Remoting和WebService已经封装的足够好了,而对Tcp和Udp提供的API还是很低级,所以ESFramework对这两种协议进行了高层的封装,而且这些封装与ESFramework的其它组件协调一致,合作起来天衣无缝!

    本文就先从封装的Tcp组件开始介绍(Tcp组件的前身可以参见.NET平台下可复用的Tcp通信层实现.NET平台下可复用的Tcp通信层实现(续) )。
    支持ESFramework的Tcp组件都需要实现ITcp接口:
   
 1     public   interface  ITcp : ITcpClientsController ,IDisposable
 2      {
 3           void  Initialize() ;        
 4           void  Start() ;
 5           void  Stop() ;  // 释放所有连接
 6 
 7           int   Port{ get  ; set  ;}        
 8           int   ConnectionCount{ get  ;}  // 当前连接的数量
 9           int   RecieveBuffSize{ get  ; set  ;}
10           int   MaxMessageSize{ set  ;}  // 当发现的消息长度大于MaxMessageSize,将关闭对应的连接
11 
12          ITcpStreamDispatcher Dispatcher{ set ;}  // 支持依赖注入
13          IContractHelper      ContractHelper{ set  ;}
14          IBufferPool          BufferPool{ set  ;} 
15          IEsbLogger             EsbLogger{ set  ;}   // 记录运行日志
16 
17           event  CbSimpleInt    SomeOneConnected ;     // 上线 ,ConnectID        
18           event  CbSimpleInt    ConnectionCountChanged ; // 在线人数变化
19 
20           event  CallBackDisconnect SomeOneDisConnected ;  // 掉线 ,ConnectID
21           event  CallBackRespond    ServiceCommitted ; // 用户请求的服务的回复信息    
22           event  CallBackRespond    ServiceDirectCommitted ; // 对应ITcpClientsController.SendData ,此时无法确定ServiceKey        
23      }    
24 
25       public   delegate   void  CallBackRespond( int  connectID ,NetMessage msg) ;
26       public   delegate   void  CallBackDisconnect( int  connectID ,DisconnectedCause cause) ;    

    上面接口定义中的注释已经解释了大多数内容,额外地,我需要解释一下几件事情:
(1)为什么ITcp没有从一个更基础的接口比如INet继承,这样ITcp和IEsbUdp(后面将要介绍的Udp组件的基础接口)就有了共同的根源?
    早在EnterpriseServerBase中确实是这样设计的,但是在ESFramework中却将它们严格的隔离开来,原因在于,Tcp与Udp是如此的不同,如果要它们相互迁就共同遵守同一个“有意义”的基础接口并不是一件愉快的事情。这里说的“有意义”,指的是,我们可以通过这个接口来几乎完整的操纵不同的Tcp组件和Udp组件,而不需要进行向下转换。我们曾在一个早期的应用中,使之即支持Tcp协议,有支持Udp协议,只需简单修改一下配置文件,就可以简单的从一个协议切换到另一个。我们实现了这个目标,但是程序的实现中掺杂了太多的if...else和向下转换,有人一定会建议,使用多态可以避免if...else,让我告诉你这样做的难处在哪里。如果使用多态替换if...else,就需要将更多的东西抽象到形式一致的接口中,但是,Tcp和Udp组件的很多方法的签名是无法达成一致的,除非都使用Object类型,可是,如果都使用Object类型的参数,在方法的实现中,仍然需要向下进行转换。可见这样做并没有任何好处。首先是使得逻辑更加复杂含混,而且对效率也没有任何帮助。
    所以太不相同的事物,就没有必要给它们安排一个共同的祖先。也许,我们可以给予一个没有多大意义的基础接口,比如像
     public   interface  INet
    {
        
void  Initialize() ;        
        
void  Start() ;
        
void  Stop() ; 

        
int   Port{ get  ; set  ;}        
    }
    这没有多大的用处。如果有一天,ESFramework发现了可以从ITcp和IEsbUdp中抽象出一个有意义的基础接口的时候,会重构来得到这个接口,这也是很简单的。

(2)通过MaxMessageSize属性可以设置应用中所允许的单个消息的最大长度,如果从某连接上接收到的消息的长度大于此值,则Tcp组件会关闭对应的连接。如果对消息长度没有限制,则可以设置为int.MaxValue。

(3)Dispatcher属性是为Tcp组件设置消息分配器,每当Tcp组件接收到一个完整的消息,就会把它交给分配器进行分派处理。消息分配器是ESFramework的核心组件,前面已经做了详细介绍。

(4)BufferPool是缓冲区池,如果tcp发现即将接收的消息的长度大于RecieveBuffSize属性给定的值,则会从BufferPool申请更大的缓冲区来接收消息,为了避免大缓冲区的重复创建/销毁的开销,并增加复用,所以使用BufferPool来管理较大的缓冲区。
   
    public   interface  IBufferPool
    {
        
byte [] RentBuffer( int  minSize) ;
        
void     GivebackBuffer( byte [] buffer) ;
    }

(5)ServiceCommitted事件,当服务器处理完一个用户请求并把回复发送出去后,将触发该事件。如果ServiceCommitted事件被引发,表示回复数据已经被发送出去了。

(6)我们看到了ITcp从ITcpClientsController继承,ITcpClientsController接口用于服务器主动控制TCP客户的连接,比如,在消息分配器组件中可能需要控制ITcp组件来直接向某个用户发送Active数据,这时只需要引用ITcpClientsController就可以了。
    public   interface  ITcpClientsController
    {        
        
// 主动给某个客户同步发信息
         void  SendData( int  ConnectID ,NetMessage msg) ;    

        
// 主动关闭连接
         void  DisposeOneConnection( int  connectID ,DisconnectedCause cause) ;
    }    

    关于ITcp的介绍就是这些,然而如何实现ITcp却有多种方法,不同的实现方法所得到的并发量和效率可能千差万别。所以ITcp的实现对与系统的效率和并发量有着非常关键的影响。ESFramework中ITcp的参考实现是AgileTcp(将在后文中讲述),如果你有更好的实现,完全可以在采用ESFramework框架的同时使用自己实现的Tcp组件,ESFramework为你保留了这种权利--ESFramework所有的重要组件都是可以替换的,只要遵循相同的接口即可:)

    感谢关注!

 转到  :ESFramework 可复用的通信框架(序)



目录
相关文章
|
网络协议 Windows
通用异步 Windows Socket TCP 客户端组件的设计与实现
编写 Windows Socket TCP 客户端其实并不困难,Windows 提供了6种 I/O 通信模型供大家选择。但本座看过很多客户端程序都把 Socket 通信和业务逻辑混在一起,剪不断理还乱。
1087 0
|
缓存 网络协议 Windows
基于 IOCP 的通用异步 Windows Socket TCP 高性能服务端组件的设计与实现
设计概述   服务端通信组件的设计是一项非常严谨的工作,其中性能、伸缩性和稳定性是必须考虑的硬性质量指标,若要把组件设计为通用组件提供给多种已知或未知的上层应用使用,则设计的难度更会大大增加,通用性、可用性和灵活性必须考虑在内。
1422 0
|
网络协议 数据库 存储
ESFramework介绍之(18)―― Tcp用户管理器组件
当我们的应用中客户端与AS之间是通过Tcp进行通信的时候,通常,应用也要求管理所有在线的用户。这种管理至少包含以下几点:(1) 当用户上线时,记录上线时间(2) 当用户请求服务时,记录请求服务的时间、服务的类型、本次服务下载的数据量(3) 当用户下线时,记录下线时间。
670 0
|
7月前
|
机器学习/深度学习 人工智能 网络协议
TCP/IP五层(或四层)模型,IP和TCP到底在哪层?
TCP/IP五层(或四层)模型,IP和TCP到底在哪层?
122 4
|
监控 网络协议 网络架构
IP协议【图解TCP/IP(笔记九)】
IP协议【图解TCP/IP(笔记九)】
149 0
|
域名解析 网络协议
IP协议, TCP协议 和DNS 服务分别是干什么的?
大家好,我是阿萨。昨天讲解了网络四层协议[TCP/IP协议族分为哪4层?]今天我们学习下IP 协议, TCP 协议和DNS 协议分别是干什么的。
297 0
IP协议, TCP协议 和DNS 服务分别是干什么的?
|
网络协议
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
|
网络协议 网络架构
六、TCP/IP模型 和 5层参考模型
六、TCP/IP模型 和 5层参考模型
六、TCP/IP模型 和 5层参考模型
|
网络协议
TCP/IP协议族有哪些?
大家好,我是阿萨。昨天我们学习了[URI 和URL 的区别是什么?]了解了URI 和URL的区别。 学习HTTP, 绕不开TCP/IP,那么TCP/IP 协议族分为哪4层?
321 0
TCP/IP协议族有哪些?
|
网络协议 网络性能优化 网络安全
网络协议报文理解刨析篇二(再谈Http和Https), 加上TCP/UDP/IP协议分析(理解着学习), 面试官都惊讶你对网络的见解(2)
网络协议报文理解刨析篇二(再谈Http和Https), 加上TCP/UDP/IP协议分析(理解着学习), 面试官都惊讶你对网络的见解(2)
网络协议报文理解刨析篇二(再谈Http和Https), 加上TCP/UDP/IP协议分析(理解着学习), 面试官都惊讶你对网络的见解(2)
下一篇
无影云桌面