package cc.aa; import android.os.Environment; import android.view.MotionEvent; import android.view.View; public class UnderstandDispatchTouchEvent { /** * 该示例的重点: * 1 ViewGroup的dispatchTouchEvent()源码学习及其注释 * 2 ViewGroup的dispatchTransformedTouchEvent()源码学习及其注释 * 3 弄明白两个问题: * (1)为什么某个子View对于ACTION_DOWN返回false,那么系统不会讲ACTION_MOVE和ACTION_UP派发给该子View. * 因为ACTION_DOWN是一系列Touch事件的开端,如果子View对于该ACTION_DOWN事件在onTouchEvent()中返回了false即未消费. * 那么ViewGroup就不会把后续的ACTION_MOVE和ACTION_UP派发给该子View.在这种情况下ViewGroup就和普通的View一样了, * 调用该ViewGroup自己的dispatchTouchEvent()从而调用自己的onTouchEvent();即不会将事件分发给子View. * 详细代码请参见如下代码分析. * * (2)为什么子view对于Touch事件处理返回true那么其上层的ViewGroup就无法处理Touch事件了 * 这个想必大家都知道了,因为该Touch事件被子View消费了其上层的ViewGroup就无法处理该Touch事件了. * 那么在源码中的依据是什么呢?请看下面的源码分析 * * * 常说事件传递中的流程是: * dispatchTouchEvent->onInterceptTouchEvent->onTouchEvent * 在这个链条中dispatchTouchEvent()是处在链首的位置当然也是最重要的. * 在dispatchTouchEvent()决定了Touch事件是由自己的onTouchEvent()处理 * 还是分发给子View处理让子View调用其自身的dispatchTouchEvent()处理. * * * 其实dispatchTouchEvent()和onInterceptTouchEvent()以及onTouchEvent()的关系 * 在dispatchTouchEvent()方法的源码中体现得很明显. * 比如dispatchTouchEvent()会调用onInterceptTouchEvent()来判断是否要拦截. * 比如dispatchTouchEvent()会调用dispatchTransformedTouchEvent()方法且在该方法中递归调用 * dispatchTouchEvent();从而会在dispatchTouchEvent()里最终调用到onTouchEvent() * * * * * 参考资料: * 0 http://blog.csdn.net/sahadev_/article/details/23839039 * 1 http://wangkuiwu.github.io/2015/01/04/TouchEvent-ViewGroup/ * 2 http://www.cnblogs.com/xiaoweiz/p/3838682.html * 3 http://hukai.me/android-deeper-touch-event-dispatch-process/ * 4 http://blog.csdn.net/yanbober/article/details/45912661 * 5 http://www.eoeandroid.com/thread-542296-1-1.html * 6 http://www.eoeandroid.com/forum.php?mod=viewthread&tid=319301 * 7 http://stackvoid.com/details-dispatch-onTouch-Event-in-Android/ * Thank you very much */ @Override public boolean dispatchTouchEvent(MotionEvent ev) { if (mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onTouchEvent(ev, 1); } boolean handled = false; if (onFilterTouchEventForSecurity(ev)) { final int action = ev.getAction(); final int actionMasked = action & MotionEvent.ACTION_MASK; /** * 第一步:对于ACTION_DOWN进行处理(Handle an initial down) * 因为ACTION_DOWN是一系列事件的开端,当是ACTION_DOWN时进行一些初始化操作. * 从源码的注释也可以看出来:清除以往的Touch状态(state)开始新的手势(gesture) * cancelAndClearTouchTargets(ev)中有一个非常重要的操作: * 将mFirstTouchTarget设置为null!!!! * 随后在resetTouchState()中重置Touch状态标识 */ if (actionMasked == MotionEvent.ACTION_DOWN) { // Throw away all previous state when starting a new touch gesture. // The framework may have dropped the up or cancel event for the previous gesture // due to an app switch, ANR, or some other state change. cancelAndClearTouchTargets(ev); resetTouchState(); } /** * 第二步:检查是否要拦截(Check for interception) * 在哪些情况下会调用该代码呢?有如下几种情况 * 1 处理ACTION_DOWN事件 * 2 当ACTION_DOWN事件被子View消费后处理ACTION_MOVE和ACTION_UP时 * 会调用该代码。因为此时mFirstTouchTarget!=null。所以此时ViewGroup * 是有机会拦截ACTION_MOVE和ACTION_UP的,但是我们也可以调用方法: * requestDisallowInterceptTouchEvent来禁止ViewGroup的事件拦截. * 如果子View没有消费Touch事件,那么那么当后续的ACTION_MOVE和ACTION_UP * 到来时是不会调用到本处代码的. * * 在dispatchTouchEvent(MotionEventev)这一大段代码中 * 使用变量intercepted来标记ViewGroup是否拦截Touch事件的传递. * 该变量在后续代码中起着很重要的作用. * * 从此处if(actionMasked == MotionEvent.ACTION_DOWN || mFirstTouchTarget != null)及其内部代码可知: * 当ViewGroup决定拦截事件后,那么后续的点击事件将会默认交给它处理,不再调用 * onInterceptTouchEvent()判断是否需要拦截. * 这个是为什么? * 因为在处理ACTION_DOWN时如果Touch事件被子View消费,那么mFirstTouchTarget不为空; * 反之,如果Touch事件没有被子View消费,那么mFirstTouchTarget为空,即此时Touch由当前 * 的ViewGroup拦截。此时当ACTION_MOVE和ACTION_UP来到时,不再满足: * if (actionMasked == MotionEvent.ACTION_DOWN || mFirstTouchTarget != null) * 当然也就无法调用其内部的onInterceptTouchEvent()。 * 通俗地说:一旦ViewGroup拦截了ACTION_DOWN事件由自身的onTouchEvent()处理,那么 * 对于后续的ACTION_MOVE和ACTION_UP而言ViewGroup不再调用onInterceptTouchEvent() * 判断是否拦截. * * 这里有个东西需要注意:FLAG_DISALLOW_INTERCEPT * 在子View中调用requestDisallowInterceptTouchEvent()后造成disallowIntercept为true * 即禁止拦截.于是不满足if(!disallowIntercept)所以也就调用不到该if内的onInterceptTouchEvent() * 自然就没有办法拦截了. * 但是requestDisallowInterceptTouchEvent()对于ACTION_DOWN是无效的. * 因为对于ACTION_DOWN会调用 cancelAndClearTouchTargets(ev)和resetTouchState(); * 对FLAG_DISALLOW_INTERCEPT等状态值复原重置(参考上面的代码) * * 举两种情况说明: * 1 当处理ACTION_DOWN时当然会满足 * if (actionMasked == MotionEvent.ACTION_DOWN || mFirstTouchTarget != null) * 对于ACTION_DOWN子View有两种处理结果 * 1.1 消耗了Touch事件,那么mFirstTouchTarget不为null. * 所以处理后续的ACTION_MOVE和ACTION_UP时依然满足该if判断 * 1.2 没有消耗Touch事件.mFirstTouchTarget=null.不满足该if. * 所以后续的ACTION_MOVE和ACTION_UP由ViewGroup处理,此时再讨论什么拦截也就没有意义了. * 同样的道理当子View消费了ACTION_DOWN后当处理ACTION_MOVE的时候ViewGroup拦截了该事件 * 那么当ACTION_UP随之到来时由于mFirstTouchTarget=null所以不会再调用该段代码,自然也就 * 不会调用onInterceptTouchEvent()判断是否拦截了.这点在上面的注释也有提及 * 2 当出现1.1的情况时满足该if判断. * 如果在子View中调用了requestDisallowInterceptTouchEvent()那么就禁止拦截 * 即disallowIntercept=true.所以不满足if (!disallowIntercept)当然也就调用不到 * onInterceptTouchEvent(ev)了,而是执行else{ intercepted = false;} * 也就是说ViewGroup无法拦截Touch了. */ final boolean intercepted; // 事件为ACTION_DOWN或者mFirstTouchTarget不为null(即已经找到能够接收touch事件的目标组件)时if成立 if (actionMasked == MotionEvent.ACTION_DOWN || mFirstTouchTarget != null) { //判断disallowIntercept(禁止拦截)标志位 //因为在其他地方可能调用了requestDisallowInterceptTouchEvent()改变该值. //对于此方法的作用其实看requestDisallowInterceptTouchEvent()这个方法名就可明白了 final boolean disallowIntercept = (mGroupFlags & FLAG_DISALLOW_INTERCEPT) != 0; //当禁止拦截为false时(即disallowIntercept为false)调用onInterceptTouchEvent(ev)方法 if (!disallowIntercept) { //既然disallowIntercept为false那么就调用onInterceptTouchEvent()方法将结果赋值给intercepted //常说事件传递中的流程是:dispatchTouchEvent->onInterceptTouchEvent->onTouchEvent //其实在这就是一个体现,在dispatchTouchEvent()中调用了onInterceptTouchEvent() intercepted = onInterceptTouchEvent(ev); ev.setAction(action); // restore action in case it was changed } else { //禁止拦截的FLAG为ture说明没有必要去执行是否需要拦截了能够顺利通过,所以设置拦截变量为false //即当禁止拦截为true时(即disallowIntercept为true)设置intercepted = false intercepted = false; } } else { //当事件不是ACTION_DOWN并且mFirstTouchTarget为null(即没有Touch的目标组件)时 //设置 intercepted = true表示ViewGroup执行Touch事件拦截的操作。 //There are no touch targets and this action is not an initial down //so this view group continues to intercept touches. intercepted = true; } /** * 第三步:检查cancel(Check for cancelation) * */ final boolean canceled = resetCancelNextUpFlag(this) || actionMasked == MotionEvent.ACTION_CANCEL; /** * 第四步:事件分发(Update list of touch targets for pointer down, if needed) */ final boolean split = (mGroupFlags & FLAG_SPLIT_MOTION_EVENTS) != 0; TouchTarget newTouchTarget = null; boolean alreadyDispatchedToNewTouchTarget = false; //不是ACTION_CANCEL并且ViewGroup的拦截标志位intercepted为false(不拦截) if (!canceled && !intercepted) { //处理ACTION_DOWN事件.这个环节比较繁琐. if (actionMasked == MotionEvent.ACTION_DOWN || (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN) || actionMasked == MotionEvent.ACTION_HOVER_MOVE) { final int actionIndex = ev.getActionIndex(); // always 0 for down final int idBitsToAssign = split ? 1 << ev.getPointerId(actionIndex):TouchTarget.ALL_POINTER_IDS; // Clean up earlier touch targets for this pointer id in case they // have become out of sync. removePointersFromTouchTargets(idBitsToAssign); final int childrenCount = mChildrenCount; if (childrenCount != 0) { // 依据Touch坐标寻找子View来接收Touch事件 // Find a child that can receive the event. // Scan children from front to back. final View[] children = mChildren; final float x = ev.getX(actionIndex); final float y = ev.getY(actionIndex); final boolean customOrder = isChildrenDrawingOrderEnabled(); // 遍历子View判断哪个子View接受Touch事件 for (int i = childrenCount - 1; i >= 0; i--) { final int childIndex = customOrder ? getChildDrawingOrder(childrenCount, i) : i; final View child = children[childIndex]; if (!canViewReceivePointerEvents(child) || !isTransformedTouchPointInView(x, y, child, null)) { continue; } newTouchTarget = getTouchTarget(child); if (newTouchTarget != null) { // 找到接收Touch事件的子View!!!!!!!即为newTouchTarget. // 既然已经找到了,所以执行break跳出for循环 // Child is already receiving touch within its bounds. // Give it the new pointer in addition to the ones it is handling. newTouchTarget.pointerIdBits |= idBitsToAssign; break; } resetCancelNextUpFlag(child); /** * 如果上面的if不满足,当然也不会执行break语句. * 于是代码会执行到这里来. * * * 调用方法dispatchTransformedTouchEvent()将Touch事件传递给子View做 * 递归处理(也就是遍历该子View的View树) * 该方法很重要,看一下源码中关于该方法的描述: * Transforms a motion event into the coordinate space of a particular child view, * filters out irrelevant pointer ids, and overrides its action if necessary. * If child is null, assumes the MotionEvent will be sent to this ViewGroup instead. * 将Touch事件传递给特定的子View. * 该方法十分重要!!!!!!!!!!!!!!!!! * 在该方法中为一个递归调用,会递归调用dispatchTouchEvent()方法!!!!!!!!!! * 在dispatchTouchEvent()中: * 如果子View为ViewGroup并且Touch没有被拦截那么递归调用dispatchTouchEvent() * 如果子View为View那么就会调用其onTouchEvent(),这个不再赘述. * * * 该方法返回true则表示子View消费掉该事件,同时进入该if判断. * 满足if语句后重要的操作有: * 1 给newTouchTarget赋值 * 2 给alreadyDispatchedToNewTouchTarget赋值为true. * 看这个比较长的英语名字也可知其含义:已经将Touch派发给新的TouchTarget * 3 执行break. * 因为该for循环遍历子View判断哪个子View接受Touch事件,既然已经找到了 * 那么就跳出该for循环. * 4 注意: * 如果dispatchTransformedTouchEvent()返回false即子View的onTouchEvent返回false * (即Touch事件未被消费)那么就不满足该if条件.所以也就无法执行addTouchTarget(). * 在此简单说一下addTouchTarget()中涉及到的ViewGroup的一个内部类TouchTarget——它是一个事件链. * 该处的mFirstTouchTarget就是一个TouchTarget.它保存了可以消耗Touch事件的View. * 在该处,如果dispatchTransformedTouchEvent()返回true即子View的onTouchEvent返回true则说明 * 该View消耗了Touch事件,那么将该View加入到事件链中!!!!!!!!!!!!!!! * 尤其注意: * 这个操作是在处理ACTION_DOWN的代码块里进行的.即是在: * if (actionMasked == MotionEvent.ACTION_DOWN|| * (split && actionMasked == MotionEvent.ACTION_POINTER_DOWN) || * actionMasked == MotionEvent.ACTION_HOVER_MOVE) * 这个大的if判断中处理的. * 当处理ACTION_MOVE事件和ACTION_UP事件的时候是不会进入这个if判断的!!!!! * 而是直接从去判断mFirstTouchTarget!!!!!!!!!!!!!!!! * 所以如果一个View不处理ACTION_DOWN那么该,那么该View是不会保存在mFirstTouchTarget * 中的,也就无法继续处理ACTION_MOVE事件和ACTION_UP事件!!!!!!!!!!即若该View不消耗 * ACTION_DOWN事件那么系统是不会讲ACTION_MOVE和ACTION_UP事件传给给该View的 * 5 注意: * 如果dispatchTransformedTouchEvent()返回true即子View * 的onTouchEvent返回true(即Touch事件被消费)那么就满足该if条件. * 从而mFirstTouchTarget不为null!!!!!!!!!!!!!!!!!!! * 6 小结: * 对于此处ACTION_DOWN的处理具体体现在dispatchTransformedTouchEvent() * 该方法返回boolean,如下: * true---->事件被消费----->mFirstTouchTarget!=null * false--->事件未被消费--->mFirstTouchTarget==null * 因为在dispatchTransformedTouchEvent()会调用递归调用dispatchTouchEvent()和onTouchEvent() * 所以dispatchTransformedTouchEvent()的返回值实际上是由onTouchEvent()决定的. * * 简单地说onTouchEvent()是否消费了Touch事件(true or false)的返回值决定了 * dispatchTransformedTouchEvent()的返回值!!!!从而决定了mFirstTouchTarget是否为null!!!!!! * 从而进一步决定了ViewGroup是否处理Touch事件.这一点在下面的代码中很有体现. */ if (dispatchTransformedTouchEvent(ev, false, child, idBitsToAssign)) { // Child wants to receive touch within its bounds. mLastTouchDownTime = ev.getDownTime(); mLastTouchDownIndex = childIndex; mLastTouchDownX = ev.getX(); mLastTouchDownY = ev.getY(); //调用addTouchTarget()将child添加到mFirstTouchTarget链表的表头 //注意在addTouchTarget()方法内部会对mFirstTouchTarget操作,使其不为null newTouchTarget = addTouchTarget(child, idBitsToAssign); alreadyDispatchedToNewTouchTarget = true; break; } }//for循环结束 } /** * 该if条件表示: * 经过前面的for循环没有找到子View接收Touch事件并且之前的mFirstTouchTarget不为空 */ if (newTouchTarget == null && mFirstTouchTarget != null) { // Did not find a child to receive the event. // Assign the pointer to the least recently added target. newTouchTarget = mFirstTouchTarget; while (newTouchTarget.next != null) { newTouchTarget = newTouchTarget.next; } //newTouchTarget指向了最初的TouchTarget newTouchTarget.pointerIdBits |= idBitsToAssign; }//处理ACTION_DOWN结束 } } /** * 经过上面对于ACTION_DOWN的处理后mFirstTouchTarget有两种情况: * (当然如果不是ACTION_DOWN就不会经过上面较繁琐的流程而是从此处开始执行,比如ACTION_MOVE和ACTION_UP) * * 情况1 mFirstTouchTarget为null * 即没有找到能够消费touch事件的子组件或者是touch事件被拦截了 * 情况2 mFirstTouchTarget不为null * 即找到了能够消费touch事件的子组件则后续的touch事件都可以传递到子View * 这两种情况的详细分析见下. * * 这两种情况下都会去调用方法: * dispatchTransformedTouchEvent(MotionEvent event,boolean cancel,View child,int desiredPointerIdBits) * 我们重点关注该方法的第三个参数View child. * 详情请参加下面dispatchTransformedTouchEvent()源码分析 * 在该源码中解释了: * 为什么子view对于Touch事件处理返回true那么其上层的ViewGroup就无法处理Touch事件了!!!!!!!!! * 为什么子view对于Touch事件处理返回false那么其上层的ViewGroup才可以处理Touch事件!!!!!!!!!! * */ if (mFirstTouchTarget == null) { /** * 情况1:mFirstTouchTarget为null * * 经过上面的分析mFirstTouchTarget为null就是说Touch事件未被消费. * 即没有找到能够消费touch事件的子组件或Touch事件被拦截了, * 则调用ViewGroup的dispatchTransformedTouchEvent()方法处理Touch事件则和普通View一样. * 即子View没有消费Touch事件,那么子View的上层ViewGroup才会调用其onTouchEvent()处理Touch事件. * 在源码中的注释为:No touch targets so treat this as an ordinary view. * 也就是说此时ViewGroup像一个普通的View那样调用dispatchTouchEvent(),且在dispatchTouchEvent() * 中会去调用onTouchEvent()方法. * 具体的说就是在调用dispatchTransformedTouchEvent()时第三个参数为null. * 第三个参数View child为null会做什么样的处理呢? * 请参见下面dispatchTransformedTouchEvent()的源码分析 */ handled = dispatchTransformedTouchEvent(ev, canceled, null,TouchTarget.ALL_POINTER_IDS); } else { /** * 情况2:mFirstTouchTarget不为null * 即找到了可以消费Touch事件的子View且后续Touch事件可以传递到该子View * 在源码中的注释为: * Dispatch to touch targets, excluding the new touch target if we already dispatched to it. * Cancel touch targets if necessary. */ TouchTarget predecessor = null; TouchTarget target = mFirstTouchTarget; while (target != null) { final TouchTarget next = target.next; if (alreadyDispatchedToNewTouchTarget && target == newTouchTarget) { //如果前面利用ACTION_DOWN事件寻找符合接收条件的子组件的同时消费掉了ACTION_DOWN事件 //那么这里为handled赋值为true handled = true; } else { final boolean cancelChild = resetCancelNextUpFlag(target.child) || intercepted; //对于非ACTION_DOWN事件继续传递给目标子组件进行处理 //依然是递归调用dispatchTransformedTouchEvent() if (dispatchTransformedTouchEvent(ev, cancelChild, target.child, target.pointerIdBits)) { handled = true; } if (cancelChild) { if (predecessor == null) { mFirstTouchTarget = next; } else { predecessor.next = next; } target.recycle(); target = next; continue; } } predecessor = target; target = next; } } /** * 处理ACTION_UP和ACTION_CANCEL * Update list of touch targets for pointer up or cancel, if needed. * 在此主要的操作是还原状态 */ if (canceled|| actionMasked == MotionEvent.ACTION_UP || actionMasked == MotionEvent.ACTION_HOVER_MOVE) { resetTouchState(); } else if (split && actionMasked == MotionEvent.ACTION_POINTER_UP) { final int actionIndex = ev.getActionIndex(); final int idBitsToRemove = 1 << ev.getPointerId(actionIndex); removePointersFromTouchTargets(idBitsToRemove); } } if (!handled && mInputEventConsistencyVerifier != null) { mInputEventConsistencyVerifier.onUnhandledEvent(ev, 1); } return handled; } //=====================以上为dispatchTouchEvent()源码分析====================== //===============以下为dispatchTransformedTouchEvent()源码分析================= /** * 在dispatchTouchEvent()中会调用dispatchTransformedTouchEvent()将事件分发给子View处理 * * Transforms a motion event into the coordinate space of a particular child view, * filters out irrelevant pointer ids, and overrides its action if necessary. * If child is null, assumes the MotionEvent will be sent to this ViewGroup instead. * * 在此请着重注意第三个参数:View child * 在dispatchTouchEvent()中多次调用dispatchTransformedTouchEvent(),但是有时候第三个参数为null,有时又不是. * 那么这个参数是否为null有什么区别呢? * 在如下dispatchTransformedTouchEvent()源码中可见多次对于child是否为null的判断,并且均做出如下类似的操作: * if (child == null) { * handled = super.dispatchTouchEvent(event); * } else { * handled = child.dispatchTouchEvent(event); * } * 这个代码是什么意思呢? * * 当child == null时会将Touch事件传递给该ViewGroup自身的dispatchTouchEvent()处理. * 即super.dispatchTouchEvent(event) * 正如源码中的注释描述的一样: * If child is null, assumes the MotionEvent will be sent to this ViewGroup instead. * * 当child != null时会调用该子view(当然该view可能是一个View也可能是一个ViewGroup)的dispatchTouchEvent(event)处理. * 即child.dispatchTouchEvent(event); * * 那么该child是否为null又是由什么决定的呢? * 在dispatchTouchEvent()中已经知道了: * 如果Touch事件被消耗掉那么child不为null * 如果Touch事件未被消耗掉那么child为null * * 这就解释了: * 为什么子view对于Touch事件处理返回true那么其上层的ViewGroup就无法处理Touch事件了!!!!!!!!! * 为什么子view对于Touch事件处理返回false那么其上层的ViewGroup才可以处理Touch事件!!!!!!!!!! */ private boolean dispatchTransformedTouchEvent(MotionEvent event,boolean cancel,View child,int desiredPointerIdBits) { final boolean handled; // Canceling motions is a special case. We don't need to perform any transformations // or filtering. The important part is the action, not the contents. final int oldAction = event.getAction(); if (cancel || oldAction == MotionEvent.ACTION_CANCEL) { event.setAction(MotionEvent.ACTION_CANCEL); if (child == null) { handled = super.dispatchTouchEvent(event); } else { handled = child.dispatchTouchEvent(event); } event.setAction(oldAction); return handled; } // Calculate the number of pointers to deliver. final int oldPointerIdBits = event.getPointerIdBits(); final int newPointerIdBits = oldPointerIdBits & desiredPointerIdBits; // If for some reason we ended up in an inconsistent state where it looks like we // might produce a motion event with no pointers in it, then drop the event. if (newPointerIdBits == 0) { return false; } // If the number of pointers is the same and we don't need to perform any fancy // irreversible transformations, then we can reuse the motion event for this // dispatch as long as we are careful to revert any changes we make. // Otherwise we need to make a copy. final MotionEvent transformedEvent; if (newPointerIdBits == oldPointerIdBits) { if (child == null || child.hasIdentityMatrix()) { if (child == null) { //调用自身的dispatchTouchEvent()!!!!!! handled = super.dispatchTouchEvent(event); } else { final float offsetX = mScrollX - child.mLeft; final float offsetY = mScrollY - child.mTop; event.offsetLocation(offsetX, offsetY); //调用子View的dispatchTouchEvent()!!!!!! handled = child.dispatchTouchEvent(event); event.offsetLocation(-offsetX, -offsetY); } return handled; } transformedEvent = MotionEvent.obtain(event); } else { transformedEvent = event.split(newPointerIdBits); } // Perform any necessary transformations and dispatch. if (child == null) { handled = super.dispatchTouchEvent(transformedEvent); } else { final float offsetX = mScrollX - child.mLeft; final float offsetY = mScrollY - child.mTop; transformedEvent.offsetLocation(offsetX, offsetY); if (! child.hasIdentityMatrix()) { transformedEvent.transform(child.getInverseMatrix()); } handled = child.dispatchTouchEvent(transformedEvent); } transformedEvent.recycle(); return handled; } //===============以上为dispatchTransformedTouchEvent()源码分析================= }