Java NIO Buffer

简介: Java Nio 1Java NIO Tutorial2Java NIO Overview3Java NIO Channel4Java NIO Buffer5Java NIO Scatter / Gather6Java NIO Channel t...


Java Nio 

1 Java NIO Tutorial
2 Java NIO Overview
3 Java NIO Channel
4 Java NIO Buffer
5 Java NIO Scatter / Gather
6 Java NIO Channel to Channel Transfers
7 Java NIO Selector
8 Java NIO FileChannel
9 Java NIO SocketChannel
10 Java NIO ServerSocketChannel
11 Java NIO DatagramChannel
12 Java NIO Pipe
13 Java NIO vs. IO

Java NIO Buffer

 
By Jakob Jenkov
 Connect with me: 
Rate article:
Share article:

Java NIO Buffers are used when interacting with NIO Channels. As you know, data is read from channels into buffers, and written from buffers into channels.

A buffer is essentially a block of memory into which you can write data, which you can then later read again. This memory block is wrapped in a NIO Buffer object, which provides a set of methods that makes it easier to work with the memory block.

Basic Buffer Usage

Using a Buffer to read and write data typically follows this little 4-step process:

  1. Write data into the Buffer
  2. Call buffer.flip()
  3. Read data out of the Buffer
  4. Call buffer.clear() or buffer.compact()

When you write data into a buffer, the buffer keeps track of how much data you have written. Once you need to read the data, you need to switch the buffer from writing mode into reading mode using the flip() method call. In reading mode the buffer lets you read all the data written into the buffer.

Once you have read all the data, you need to clear the buffer, to make it ready for writing again. You can do this in two ways: By calling clear() or by calling compact(). The clear() method clears the whole buffer. The compact()method only clears the data which you have already read. Any unread data is moved to the beginning of the buffer, and data will now be written into the buffer after the unread data.

Here is a simple Buffer usage example, with the write, flip, read and clear operations maked in bold:

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();

//create buffer with capacity of 48 bytes
ByteBuffer buf = ByteBuffer.allocate(48);

int bytesRead = inChannel.read(buf); //read into buffer.
while (bytesRead != -1) {

  buf.flip();  //make buffer ready for read

  while(buf.hasRemaining()){
      System.out.print((char) buf.get()); // read 1 byte at a time
  }

  buf.clear(); //make buffer ready for writing
  bytesRead = inChannel.read(buf);
}
aFile.close();

Buffer Capacity, Position and Limit

A buffer is essentially a block of memory into which you can write data, which you can then later read again. This memory block is wrapped in a NIO Buffer object, which provides a set of methods that makes it easier to work with the memory block.

Buffer has three properties you need to be familiar with, in order to understand how a Buffer works. These are:

  • capacity
  • position
  • limit

The meaning of position and limit depends on whether the Buffer is in read or write mode. Capacity always means the same, no matter the buffer mode.

Here is an illustration of capacity, position and limit in write and read modes. The explanation follows in the sections after the illustration.

Java NIO: Buffer capacity, position and limit in write and read mode.
Buffer capacity, position and limit in write and read mode.

Capacity

Being a memory block, a Buffer has a certain fixed size, also called its "capacity". You can only write capacitybytes, longs, chars etc. into the Buffer. Once the Buffer is full, you need to empty it (read the data, or clear it) before you can write more data into it.

Position

When you write data into the Buffer, you do so at a certain position. Initially the position is 0. When a byte, long etc. has been written into the Buffer the position is advanced to point to the next cell in the buffer to insert data into. Position can maximally become capacity - 1.

When you read data from a Buffer you also do so from a given position. When you flip a Buffer from writing mode to reading mode, the position is reset back to 0. As you read data from the Buffer you do so from position, andposition is advanced to next position to read.

Limit

In write mode the limit of a Buffer is the limit of how much data you can write into the buffer. In write mode the limit is equal to the capacity of the Buffer.

When flipping the Buffer into read mode, limit means the limit of how much data you can read from the data. Therefore, when flipping a Buffer into read mode, limit is set to write position of the write mode. In other words, you can read as many bytes as were written (limit is set to the number of bytes written, which is marked by position).

Buffer Types

Java NIO comes with the following Buffer types:

  • ByteBuffer
  • MappedByteBuffer
  • CharBuffer
  • DoubleBuffer
  • FloatBuffer
  • IntBuffer
  • LongBuffer
  • ShortBuffer

As you can see, these Buffer types represent different data types. In other words, they let you work with the bytes in the buffer as char, short, int, long, float or double instead.

The MappedByteBuffer is a bit special, and will be covered in its own text.

Allocating a Buffer

To obtain a Buffer object you must first allocate it. Every Buffer class has an allocate() method that does this. Here is an example showing the allocation of a ByteBuffer, with a capacity of 48 bytes:

ByteBuffer buf = ByteBuffer.allocate(48);

Here is an example allocating a CharBuffer with space for 1024 characters:

CharBuffer buf = CharBuffer.allocate(1024);

Writing Data to a Buffer

You can write data into a Buffer in two ways:

  1. Write data from a Channel into a Buffer
  2. Write data into the Buffer yourself, via the buffer's put() methods.

Here is an example showing how a Channel can write data into a Buffer:

int bytesRead = inChannel.read(buf); //read into buffer.

Here is an example that writes data into a Buffer via the put() method:

buf.put(127);    

There are many other versions of the put() method, allowing you to write data into the Buffer in many different ways. For instance, writing at specific positions, or writing an array of bytes into the buffer. See the JavaDoc for the concrete buffer implementation for more details.

flip()

The flip() method switches a Buffer from writing mode to reading mode. Calling flip() sets the position back to 0, and sets the limit to where position just was.

In other words, position now marks the reading position, and limit marks how many bytes, chars etc. were written into the buffer - the limit of how many bytes, chars etc. that can be read.

Reading Data from a Buffer

There are two ways you can read data from a Buffer.

  1. Read data from the buffer into a channel.
  2. Read data from the buffer yourself, using one of the get() methods.

Here is an example of how you can read data from a buffer into a channel:

//read from buffer into channel.
int bytesWritten = inChannel.write(buf);

Here is an example that reads data from a Buffer using the get() method:

byte aByte = buf.get();    

There are many other versions of the get() method, allowing you to read data from the Buffer in many different ways. For instance, reading at specific positions, or reading an array of bytes from the buffer. See the JavaDoc for the concrete buffer implementation for more details.

rewind()

The Buffer.rewind() sets the position back to 0, so you can reread all the data in the buffer. The limitremains untouched, thus still marking how many elements (bytes, chars etc.) that can be read from the Buffer.

clear() and compact()

Once you are done reading data out of the Buffer you have to make the Buffer ready for writing again. You can do so either by calling clear() or by calling compact().

If you call clear() the position is set back to 0 and the limit to capacity. In other words, the Buffer is cleared. The data in the Buffer is not cleared. Only the markers telling where you can write data into the Buffer are.

If there is any unread data in the Buffer when you call clear() that data will be "forgotten", meaning you no longer have any markers telling what data has been read, and what has not been read.

If there is still unread data in the Buffer, and you want to read it later, but you need to do some writing first, callcompact() instead of clear().

compact() copies all unread data to the beginning of the Buffer. Then it sets position to right after the last unread element. The limit property is still set to capacity, just like clear() does. Now the Buffer is ready for writing, but you will not overwrite the unread data.

mark() and reset()

You can mark a given position in a Buffer by calling the Buffer.mark() method. You can then later reset the position back to the marked position by calling the Buffer.reset() method. Here is an example:

buffer.mark();

//call buffer.get() a couple of times, e.g. during parsing.

buffer.reset();  //set position back to mark.    

equals() and compareTo()

It is possible to compare two buffers using equals() and compareTo().

equals()

Two buffers are equal if:

  1. They are of the same type (byte, char, int etc.)
  2. They have the same amount of remaining bytes, chars etc. in the buffer.
  3. All remaining bytes, chars etc. are equal.

As you can see, equals only compares part of the Buffer, not every single element inside it. In fact, it just compares the remaining elements in the Buffer.

compareTo()

The compareTo() method compares the remaining elements (bytes, chars etc.) of the two buffers, for use in e.g. sorting routines. A buffer is considered "smaller" than another buffer if:

  1. The first element which is equal to the corresponding element in the other buffer, is smaller than that in the other buffer.
  2. All elements are equal, but the first buffer runs out of elements before the second buffer does (it has fewer elements).







目录
相关文章
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用
|
10月前
|
缓存 网络协议 Java
JAVA网络IO之NIO/BIO
本文介绍了Java网络编程的基础与历史演进,重点阐述了IO和Socket的概念。Java的IO分为设备和接口两部分,通过流、字节、字符等方式实现与外部的交互。
328 0
|
12月前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
345 3
|
存储 监控 Java
Java的NIO体系
通过本文的介绍,希望您能够深入理解Java NIO体系的核心组件、工作原理及其在高性能应用中的实际应用,并能够在实际开发中灵活运用这些知识,构建高效的Java应用程序。
382 5
|
存储 网络协议 Java
Java NIO 开发
本文介绍了Java NIO(New IO)及其主要组件,包括Channel、Buffer和Selector,并对比了NIO与传统IO的优势。文章详细讲解了FileChannel、SocketChannel、ServerSocketChannel、DatagramChannel及Pipe.SinkChannel和Pipe.SourceChannel等Channel实现类,并提供了示例代码。通过这些示例,读者可以了解如何使用不同类型的通道进行数据读写操作。
261 0
Java NIO 开发
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
Java
让星星⭐月亮告诉你,Java NIO之Buffer详解 属性capacity/position/limit/mark 方法put(X)/get()/flip()/compact()/clear()
这段代码演示了Java NIO中`ByteBuffer`的基本操作,包括分配、写入、翻转、读取、压缩和清空缓冲区。通过示例展示了`position`、`limit`和`mark`属性的变化过程,帮助理解缓冲区的工作原理。
173 2
|
Java
"揭秘Java IO三大模式:BIO、NIO、AIO背后的秘密!为何AIO成为高并发时代的宠儿,你的选择对了吗?"
【8月更文挑战第19天】在Java的IO编程中,BIO、NIO与AIO代表了三种不同的IO处理机制。BIO采用同步阻塞模型,每个连接需单独线程处理,适用于连接少且稳定的场景。NIO引入了非阻塞性质,利用Channel、Buffer与Selector实现多路复用,提升了效率与吞吐量。AIO则是真正的异步IO,在JDK 7中引入,通过回调或Future机制在IO操作完成后通知应用,适合高并发场景。选择合适的模型对构建高效网络应用至关重要。
383 2
|
缓存 Java
java文件读取 while ((len = reader.read(buffer)) != -1){}的理解
本文解释了Java中使用`InputStreamReader`和`read(buffer)`方法循环读取文件内容的机制,强调了如何正确理解读取循环和处理读取到的数据,以及如何处理字符编码和换行符。
277 0
|
安全 Java Linux
(七)Java网络编程-IO模型篇之从BIO、NIO、AIO到内核select、epoll剖析!
IO(Input/Output)方面的基本知识,相信大家都不陌生,毕竟这也是在学习编程基础时就已经接触过的内容,但最初的IO教学大多数是停留在最基本的BIO,而并未对于NIO、AIO、多路复用等的高级内容进行详细讲述,但这些却是大部分高性能技术的底层核心,因此本文则准备围绕着IO知识进行展开。
539 1