uva 10245 - The Closest Pair Problem

简介: 点击打开链接uva 10245 题目意思:   给定N个点,找到所有点中距离最小的 解题思路: 1:递归+分治 《网上大牛的解释如下》 2在二维空间里,可用分治法求解最近点对问题。

点击打开链接uva 10245


题目意思:  

给定N个点,找到所有点中距离最小的


解题思路:

1:递归+分治


《网上大牛的解释如下》

2在二维空间里,可用分治法求解最近点对问题。预处理:分别根据点的x轴和y轴坐标进行排序,得到X和Y,很显然此时X和Y中的点就是S中的点。
           1情况(1):点数小于等于三时:                      
           2情况(2):点数大于三时:
           3首先划分集合S为SL和SR,使得SL中的每一个点位于SR中每一个点的左边,并且SL和SR中点数相同。分别在SL和SR中解决最近点对问题,得到DL和DR,分别表示SL和SR中的最近点对的距离。令d=min(DL,DR)。如果S中的最近点对(P1,P2)。P1、P2两点一个在SL和一个在SR中,那么P1和P2一定在以L为中心的间隙内,以L-d和L+d为界

         
           4如果在SL中的点P和在SR中的点Q成为最近点对,那么P和Q的距离必定小于d。因此对间隙中的每一个点,在合并步骤中,只需要检验yp+d和yp-d内的点即可。

3《解题步骤》
步骤1:根据点的y值和x值对S中的点排序。
步骤2:找出中线L将S划分为SL和SR
步骤3:将步骤2递归的应用解决SL和SR的最近点对问题,并令d=min(dL,dR)。
步骤4:将L-d~L+d内的点以y值排序,对于每一个点(x1,y1)找出y值在y1-d~y1+d内的所有点,计算距离为d'。如果d'小于d,令d=d',最后的d值就是答案


代码:

#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <cmath>  
#include <algorithm>  
using namespace std;
#define  MAXN  0XFFFFFFF/*无穷大的数*/
#define  N 100010

struct Point {
    double x;
    double y;
} p[N];
int n;
int tmp_p[N];/*存储中线两边距离为d区间内点的下标*/

/*对点进行按照x坐标排序*/
bool cmpx(Point a , Point b) {
    if (a.x < b.x) return true;
    return false;
}

/*对点进行按照y坐标排序*/
bool cmpy(int a, int b) {
    if(p[a].y < p[b].y) return true;
    return false;
}

/*最小值函数*/
double min(double a, double b) {
    return a < b ? a : b;
}

/*求出两个点之间的距离*/
double dis(int i, int j) {
    double tmp_x = (p[i].x - p[j].x)*(p[i].x - p[j].x);
    double tmp_y = (p[i].y - p[j].y)*(p[i].y - p[j].y);
    return sqrt(tmp_x+tmp_y);
}

/*递归求解*/
double Closest_Pair(int left, int right) {
    int i, j, k = 0;
    double d = MAXN;/*d必须为局部变量*/
    if (left == right) return d;/*相等的时候不再递归*/
    if (left + 1 == right) return dis(left, right);/*两个点之间相邻直接计算*/
    int mid = (left + right) >> 1;/*求出两个中点的坐标,位运算*/
    double d1 = Closest_Pair(left, mid);/*左边递归求解*/
    double d2 = Closest_Pair(mid+1, right);/*右边递归求解*/
    d = min(d1, d2);/*更新d*/
    /*每次同时更新中线两边距离为d的区间上的点*/ 
    for (i = left; i <= right; i++) {
        if (fabs(p[mid].x - p[i].x) <= d)/*两者之间的横坐标距离差绝对值小于等于d*/
            tmp_p[k++] = i;/*插入数组后面*/
    }
    sort(tmp_p, tmp_p + k, cmpy);/*按照y坐标排序*/
    /*扫描这些点更新d值*/
    for (i = 0; i < k; i++) {
        for (j = i + 1; j < k && p[tmp_p[j]].y-p[tmp_p[i]].y < d ; j++) {/*只需要枚举差值小于d的即可*/
            double d3 = dis(tmp_p[i], tmp_p[j]);
            if (d-d3 > 1e-9) d = d3;/*判断能否更新d*/
        }
    }
    return d;
}

int main() {
    //freopen("input.txt" , "r" , stdin);
    double MIN;
    while (scanf("%d", &n) && n) {
        for (int i = 0; i < n; i++)
            scanf("%lf %lf", &p[i].x, &p[i].y);
        sort(p, p + n, cmpx);/*排序*/
        MIN = Closest_Pair(0, n-1);/*求出最小值MIN*/
        if (MIN - 10000 > 1e-9) printf("INFINITY\n");
        else printf("%.4lf\n", MIN);
    }
    return 0;
}


目录
相关文章
|
6月前
|
Java
hdu-1016-Prime Ring Problem
hdu-1016-Prime Ring Problem
29 0
|
算法
light oj 1258 - Making Huge Palindromes(KMP)
ight oj里这个题目是属于KMP分类的,但乍看好像不是kmp,因为只有一个字符串。要想的到一个回文串,把该字符串翻转接到原串后面必然是一个回文串,但并不一定是最短的。我们必须考虑怎么把两个串尽量融合在一起,这就要看翻转串的前段与原串的后段有多少是匹配的了,这里就用到了KMP算法。
37 1
|
图形学
hdu1086 You can Solve a Geometry Problem too(判断线段相交)
hdu1086 You can Solve a Geometry Problem too(判断线段相交)
71 0
codeforces 317 A Perfect Pair
我先排除了输出-1的,然后再考虑如何计算最小的步数。我们主要在每一步中最小一个加上另一个就可以了,这是朴素的求法,但可能出现这样的情况 比如 -100000000 1 10000000 这样的话会循环100000000多次,肯定超时,所以我们要加快速度。
41 0
UVa11296 - Counting Solutions to an Integral Equation(枚举技巧)
UVa11296 - Counting Solutions to an Integral Equation(枚举技巧)
50 0
UVa11565 - Simple Equations
UVa11565 - Simple Equations
52 0
uva673 Parentheses Balance
uva673 Parentheses Balance
46 0
LeetCode 241. Different Ways to Add Parentheses
给定一个含有数字和运算符的字符串,为表达式添加括号,改变其运算优先级以求出不同的结果。你需要给出所有可能的组合的结果。有效的运算符号包含 +, - 以及 * 。
83 0
LeetCode 241. Different Ways to Add Parentheses
|
Unix Python
LeetCode 71. Simplify Path
给定文件的绝对路径(Unix下的路径)字符串,简化此字符串。
86 0
LeetCode 71. Simplify Path