浮点数的二进制表示

简介: 文章转载自:http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.


文章转载自:http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html

    1. 

    前几天,我在读一本C语言教材,有一道例题:

  #include <stdio.h>

  void main(void){

    int num=9; /* num是整型变量,设为9 */

    float* pFloat=&num; /* pFloat表示num的内存地址,但是设为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

    *pFloat=9.0; /* 将num的值改为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

  }

运行结果如下:

  num的值为:9
  *pFloat的值为:0.000000
  num的值为:1091567616
  *pFloat的值为:9.000000

我很惊讶,num和*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。我读了一些资料,下面就是我的笔记。

2.

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。

  int num=9;

上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。

那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?

3.

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

   s+E+M

   (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

5.

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E还可以再分成三种情况:

(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。

6.

好了,关于浮点数的表示规则,就说到这里。

下面,让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000?

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0×0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

7.

再看例题的第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即0 10000010 001 0000 0000 0000 0000 0000。这个32位的二进制数,还原成十进制,正是1091567616。


相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
目录
相关文章
|
6月前
二进制和进制转换
二进制和进制转换
85 0
|
2月前
二进制转十进制
二进制转十进制
85 13
|
数据处理
二进制算术运算的介绍
二进制算术运算 引言: 二进制算术运算是计算机科学中的重要概念,它是计算机内部运算的基础。本文将介绍二进制算术运算的基本概念和常见的运算符,以及如何进行二进制数的加法、减法、乘法和除法运算。 一、二进制算术运算的基本概念 二进制数是由0和1组成的数,它是计算机中表示数据的基本形式。在二进制算术运算中,我们使用了一些基本的运算符,包括加法、减法、乘法和除法。这些运算符在二进制数中的运算规则与十进制数中的运算规则类似,但是需要注意的是,二进制数中没有负数的概念,所以减法运算需要借位。 二、二进制数的加法运算 二进制数的加法运算与十进制数的加法运算类似,只需要按照从右到左的顺序逐位相加,并考虑
214 1
【进制转换】— 包含整数和小数部分转换(二进制、八进制、十进制、十六进制)手写版,超详细
【进制转换】— 包含整数和小数部分转换(二进制、八进制、十进制、十六进制)手写版,超详细
二进制浮点数的加减法运算
二进制浮点数的加减法运算
二进制、八进制、十进制、十六进制互转,原码、补码、反码知识
二进制、八进制、十进制、十六进制互转,原码、补码、反码知识
二进制、八进制、十进制、十六进制互转,原码、补码、反码知识
进制转换(二进制、八进制、十进制、十六进制)涵盖整数与小数部分,超级详细!
进制转换(二进制、八进制、十进制、十六进制)涵盖整数与小数部分,超级详细!
1346 0
进制转换(二进制、八进制、十进制、十六进制)涵盖整数与小数部分,超级详细!

热门文章

最新文章