C语言有哪些鲜为人知的特性?

简介:

译注:本文摘编自 Quora 的一个热门问答贴。 请在linux系统下测试本文中出现的代码

Andrew Weimholt 的回复:

switch语句中的case 关键词可以放在if-else或者是循环当中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
switch (a)
{
     case 1:;
       // ...
       if (b==2)
       {
         case 2:;
         // ...
       }
       else case 3:
       {
         // ...
         for (b=0;b<10;b++)
         {
           case 5:;
           // ...
         }
       }
       break ;
 
     case 4:

Brian Bi 的回复:

1. 声明紧随用途之后

理解声明有一条很简单的法则,不过不是什么“从左向右”这种没道理却到处宣传的法则。这一法则的观点是,一个声明是要告诉你,你所声明的对象要如何使用。例如:

1
2
3
4
int *p; /* *p是int类型的, 因此p是指向int类型的指针 */
int a[5]; /* a[0], ..., a[4] 是int类型的, 因此a是int类型的数组 */
int *ap[5]; /* *ap[0], .., *ap[4] 是int类型的, 因此ap是包含指向int类型指针的指针数组 */
int (*pa)[5]; /* (*pa)[0], ..., (*pa)[4] 是int类型的, 因此pa是指向一个int类型数组的指针 */

更多详情请看这里: Brian Bi’s answer to C (programming language): Why doesn’t C use better notation for pointers?

2. 指定初始化:

在C99之前,你只能按顺序初始化一个结构体。在C99中你可以这样做:

1
2
3
4
5
6
struct Foo {
     int x;
     int y;
     int z;
};
Foo foo = {.z = 3, .x = 5};

这段代码首先初始化了foo.z,然后初始化了foo.xfoo.y 没有被初始化,所以被置为0。
这一语法同样可以被用在数组中。以下三行代码是等价的:

1
2
3
int a[5] = {[1] = 2, [4] = 5};
int a[] = {[1] = 2, [4] = 5};
int a[5] = {0, 2, 0, 0, 5};

3. 受限指针(C99):

restrict关键词是一个限定词,可以被用在指针上。它向编译器保证,在这个指针的生命周期内,任何通过该指针访问的内存,都只能被这个指针改变。比如,在

1
2
3
4
5
6
int f( const int * restrict x, int * y) {
     (*y)++;
     int z = *x;
     (*y)--;
     return z;
}

编译器可能会假设,xy 所指的并不是同一个int对象,因为如果它们指向了同一个对象,则x的值将可以通过y修改,这正是你保证不会发生的。因此,将允许编译器来优化f,就好像函数原本被写做如下这样:

1
2
3
int f( const int * restrict x, int * y) {
     return *x;
}

如果你违反协议向f传递两个指向同一int对象的指针时,将产生未定义行为。

我猜想,引入这一特性最初的动机之一是想让C语言在数值计算时可以Fortran一样快。在Fortran 中,默认假定数组不会重叠,因此只有你通过restrict 限定词来显式的告诉编译器数组不能重叠,编译器才能在C语言中进行这样的优化。

4. 静态数组索引(C99)

1
2
3
void f( int a[ static 10]) {
     /* ... */
}

中,你向编译器保证,你传递给f 的指针指向一个具有至少10个int 类型元素的数组的首个元素。我猜这也是为了优化;例如,编译器将会假定a 非空。编译器还会在你尝试要将一个可以被静态确定为null的指针传入或是一个数组太小的时候发出警告。

1
2
3
void f( int a[ const ]) {
     /* ... */
}

你不能修改指针a.,这和说明符int * const a.作用是一样的。然而,当你结合上一段中提到的static 使用,比如在int a[static const 10] 中,你可以获得一些使用指针风格无法得到的东西。

5. 泛型表达式(C11)

这个表达式会在编译期间根据控制表达式的类型,在一个含有一个或多个备选方案的集合中做出选择。下面这个例子可以很好的说明这一切:

1
2
3
4
5
#define cbrt(X) _Generic((X), \
                         long double : cbrtl, \
                         default : cbrt, \
                         float : cbrtf \
                         )(X)

因此,如果expr 是long double类型的, cbrt(expr) 被转换为cbrtl(expr),如果是float类型 则转换为cbrtf(expr) ,或是转换为cbrt(expr),如果是其他不同的类型(比如说double)。注意,_Generic 可以用在宏以外的地方,但是用在宏里面最好因为C不允许你进行函数重载。

6. wint_t (C99)

我相信大家都知道wint_t 但是 wint_t 到底是个什么鬼东西呢?

好吧,记住fgetc 实际上并不会返回 char 。它会返回int。显然这是因为fgetc 必须返回返回一个与其他char 都不同的值,也就是EOF,表示到达文件末尾。基于相同的原因,fgetwc 并不返回wchar_t。它会返回一个类型,叫做wint_t 可以表示所有无效wchar_t 类型,包括WEOF,来表示到达文件末尾。

Michal Forišek

下面这段C程序可以准确的打印2的747次方而不产生误差。这是为什么呢?

程序:

1
2
3
4
5
6
#include <stdio.h>
#include <math.h>
int main() {
     printf ( "%.0f\n" , pow (2,747));
     return 0;
}

输出结果:

1
740298315191606967520227188330889966610377319868419938630605715764070011466206019559325413145373572325939050053182159998975553533608824916574615132828322000124194610605645134711392062011527273571616649243219599128195212771328

答案:

这个问题包含两个部分。
其一,2的次方可以在double 中被准确的保存而不产生任何精度上的损失(这一结论直到2^1023都是对的,再往后就会产生上溢,得到一个正无穷的值)

另外一部分,很多人猜测是语言实现中的某些特殊情况导致的,但是实际上并非如此。的确,当输入的数据可以被2的某高次方整除时,有一部分代码被执行了,但是本质上这只是通常实现工作时的一个副作用。基本上,printf 在打印数字(任何类型)的时候只是做了从二进制到十进制的转换。并且由于结果对于浮点数可能会过大,printf 的内部实现包含和使用一个大整型实现,尽管在C中并没有大整型这种变量(在gcc源代码中,vfprintf.c 和dtoa.c 中包含了很多转换,如果你想要了解可以一看。)

如果你尝试打印3^474,

程序:

1
2
3
4
5
6
#include <stdio.h>
#include <math.h>
int main() {
     printf ( "%.0f\n" , pow (3,474));
     return 0;
}

输出结果:

14304567688284661153278974752312031583901259203711201647725006924333106634519194823303091330277684776547167093155518867557708479462413116497799842448027156309852771422896137582164841870381535840058702788340257784498862132559872

结果仍然是一个很大的数且位数也正确,但是这一次却不够精确。这里会产生一个相对误差,因为3^474不能以双精度浮点数准确的表示。准确的数应该是这样的143045676882846603471

译注:在linux系统上是可以的,在windows 64位上后面会有很多0

Utkal Sinha

我发现一些C语言特性或者是小技巧,我觉得只有很少的人知道。

1. 不使用加号来使数字相加

因为printf() 函数返回它所打印的字符的个数,我们可以利用这一点来使数字相加,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include<stdio.h>;
 
int add( int a, int b){
     if ( if (a!=0&&b!=0))
         return printf ( "%*c%*c" ,a, '\r' ,b, '\r' );
     else return a!=0?a:b;
}
 
int main(){
     int A = 0, B = 0;
     printf ( "Enter the two numbers to add\n" );
     scanf ( "%d %d" ,&A,&B);
     printf ( "Required sum is %d" ,add(A,B));
 
     return 0;
}

利用位操作同样也可以做到:

1
2
3
4
5
6
7
int Add( int x, int y)
{
     if (y == 0)
         return x;
     else
         return Add( x ^ y, (x & y) << 1);
}

2. 条件运算符的用法

通常我们都这样使用它:
x = (y < 0) ? 10 : 20;
但是同样也可以这样用:
(y < 0 ? x : y) = 20;

3. 在一个返回值为void 的函数中写一个return 语句

1
2
3
4
5
6
7
8
9
static void foo ( void ) { }
static void bar ( void ) {
return foo(); // 注意这里的返回语句.
}
 
int main ( void ) {
bar();
return 0;
}

4. 逗号表达式的使用

通常逗号表达式会这样使用:

1
2
3
4
for ( int i=0; i<10; i++, doSomethingElse())
{
   /* whatever */
}

但是你可以在其他任何地方使用逗号表达式:

1
int j = ( printf ( "Assigning variable j\n" ), getValueFromSomewhere());

每条语句都进行了求值,但是表达式的值是最后一个语句的值。

5. 将结构体初始化为0

struct mystruct a = {0};

这将把结构体中全部元素初始化为0

6. 多字符常量

int x = 'ABCD';

这会把x的值设置为0×41424344(或者0×44434241,取决于架构)

7. printf 允许你使用变量来格式化格式说明符本身

1
2
3
4
5
6
7
8
#include <stdio.h>
 
int main() {
     int a = 3;
     float b = 6.412355;
     printf ( "%.*f\n" ,a,b);
     return 0;
}

* 符号可以达到这一目的

希望这些可以帮助到大家
此致敬礼

Vivek Nagarajan

你可以在奇怪的地方使用#include

如果你写:

1
2
3
4
5
6
7
#include <stdio.h>
 
void main()
{
     printf
#include "fragment.c"       
}

fragment.c 包含:

1
( "dayum!\n" );

这完全没有问题。只要#include 包含完整可解析的C表达式,预处理器并不在意它放在什么位置。

Vipul Mehta

1. printf 格式限定符中指定(POSIX扩展语法)

printf("%4$d %3$d %2$d %1$d", 1, 2, 3, 9); //将会打印9 3 2 1

2. 在scanf 中忽略输入输入

scanf("%*d%d", &a);// 如果输入1 2,则只会得到2

3. 在switch 中使用范围(gcc扩展语法)

1
2
3
4
5
switch (c) {
   case 'A' ... 'Z' : //do something
   break ;
   case 1 ... 5 : //do something
}

4. 使用前缀ob 来限定常数,使其被当做二进制数(gcc扩展语法)

1
printf ( "%d" ,0b1101); // prints 13

5.完全正确的最短的C语言程序

1
main;

译注:虽然编译没有error但是却不能执行

Karan Bansal

scanf()的力量

假定我们有一个数组char a[100]
读取一个字符串:
scanf("%[^\n]\n", a);//表示一直读取直到遇到'\n',并且忽略掉'\n'

读取字符串直到遇到逗号:
scanf("%[^,]", a);//但是这次不会忽略逗号

如果你想忽略掉某个输入,使用在% 后使用*,如果你想要得到John Smith 的姓:

1
scanf ( "%s %s" , temp, last_name); //典型答案,使用一个临时变量
1
2
3
scanf ( "%s" , last_name);
scanf ( "%s" , last_name);
// 另一种答案,使用一个变量但是调用两次 `scanf()`
1
2
scanf ( "%*s %s" , last);
//最佳答案,因为你不需要额外的变量或是调用两次`scanf()`

顺便提一句,你应该非常小心的使用scanf 因为它可能会是你的输入缓冲溢出!通常你应该使用fgets 和sscanf 而不是仅仅使用scanf,使用fgets 来读取一行,然后用sscanf 来解析这一行,就像上面演示的一样。

Afif Ahmed

~-n 等于n-1
-~n 等于n+1

原因:
当我们写-n时,实际上是以补码形式储存,所以-n 可以写成~n + 1,吧整个式子放在上面表达式的前面你就能明白原因了。

相关文章
|
C语言 编译器 C++
或许有一两点你不知的C语言特性
关键字篇 volatile关键字 鲜为人知的关键字之一volatile,表示变量是'易变的',之所以会有这个关键字,主要是消除编译优化带来的一些问题,看下面的代码 1 int a = 8; 2 int b = a; 3 int c = a; 编译器认为,上面的第2句代码与第三句代码之间,没有存在对a赋值的语句,所以编译出来的汇编代码在讲a的值赋给c的时候,不会再次到内存取这个变量的值,而是取cache中的值。
1033 0
|
3月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
44 3
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
68 10
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
52 9
|
1月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
42 8
|
1月前
|
C语言 开发者
【C语言】数学函数详解
在C语言中,数学函数是由标准库 `math.h` 提供的。使用这些函数时,需要包含 `#include <math.h>` 头文件。以下是一些常用的数学函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。
52 6
|
1月前
|
存储 C语言
【C语言】输入/输出函数详解
在C语言中,输入/输出操作是通过标准库函数来实现的。这些函数分为两类:标准输入输出函数和文件输入输出函数。
282 6
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
64 6
|
1月前
|
C语言 开发者
【C语言】断言函数 -《深入解析C语言调试利器 !》
断言(assert)是一种调试工具,用于在程序运行时检查某些条件是否成立。如果条件不成立,断言会触发错误,并通常会终止程序的执行。断言有助于在开发和测试阶段捕捉逻辑错误。
43 5
|
2月前
|
存储 人工智能 算法
数据结构实验之C 语言的函数数组指针结构体知识
本实验旨在复习C语言中的函数、数组、指针、结构体与共用体等核心概念,并通过具体编程任务加深理解。任务包括输出100以内所有素数、逆序排列一维数组、查找二维数组中的鞍点、利用指针输出二维数组元素,以及使用结构体和共用体处理教师与学生信息。每个任务不仅强化了基本语法的应用,还涉及到了算法逻辑的设计与优化。实验结果显示,学生能够有效掌握并运用这些知识完成指定任务。
61 4