java一些常用并发工具示例

简介: 最近把《java并发编程实战》-Java Consurrency in Practice 重温了一遍,把书中提到的一些常用工具记录于此: 一、闭锁(门栓)- CountDownLatch 适用场景:多线程测试时,通常为了精确计时,要求所有线程都ready后,才开始执行,防止有线程先起跑,造成不公平,类似的,所有线程执行完,整个程序才算运行完成。

最近把《java并发编程实战》-Java Consurrency in Practice 重温了一遍,把书中提到的一些常用工具记录于此:

一、闭锁(门栓)- CountDownLatch

适用场景:多线程测试时,通常为了精确计时,要求所有线程都ready后,才开始执行,防止有线程先起跑,造成不公平,类似的,所有线程执行完,整个程序才算运行完成。

    /**
     * 闭锁测试(菩提树下的杨过 http://yjmyzz.cnblogs.com/)
     *
     * @throws InterruptedException
     */
    @Test
    public void countdownLatch() throws InterruptedException {
        CountDownLatch startLatch = new CountDownLatch(1); //类似发令枪
        CountDownLatch endLatch = new CountDownLatch(10);//这里的数量,要与线程数相同

        for (int i = 0; i < 10; i++) {
            Thread t = new Thread(() -> {
                try {
                    startLatch.await(); //先等着,直到发令枪响,防止有线程先run
                    System.out.println(Thread.currentThread().getName() + " is running...");
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                } finally {
                    endLatch.countDown(); //每个线程执行完成后,计数
                }
            });
            t.setName("线程-" + i);
            t.start();
        }
        long start = System.currentTimeMillis();
        startLatch.countDown();//发令枪响,所有线程『开跑』
        endLatch.await();//等所有线程都完成
        long end = System.currentTimeMillis();
        System.out.println("done! exec time => " + (end - start) + " ms");
    }  

执行结果:

线程-1 is running...
线程-5 is running...
线程-8 is running...
线程-4 is running...
线程-3 is running...
线程-0 is running...
线程-2 is running...
线程-9 is running...
线程-7 is running...
线程-6 is running...
done! exec time => 13 ms

注:大家可以把第14行注释掉,再看看运行结果有什么不同。

 

二、信号量(Semaphore)

适用场景:用于资源数有限制的并发访问场景。

   public class BoundedHashSet<T> {
        private final Set<T> set;
        private final Semaphore semaphore;

        public BoundedHashSet(int bound) {
            this.set = Collections.synchronizedSet(new HashSet<T>());
            this.semaphore = new Semaphore(bound);
        }

        public boolean add(T t) throws InterruptedException {
            if (!semaphore.tryAcquire(5, TimeUnit.SECONDS)) {
                return false;
            }
            ;
            boolean added = false;
            try {
                added = set.add(t);
                return added;
            } finally {
                if (!added) {
                    semaphore.release();
                }
            }
        }

        public boolean remove(Object o) {
            boolean removed = set.remove(o);
            if (removed) {
                semaphore.release();
            }
            return removed;
        }
    }

    @Test
    public void semaphoreTest() throws InterruptedException {

        BoundedHashSet<String> set = new BoundedHashSet<>(5);
        for (int i = 0; i < 6; i++) {
            if (set.add(i + "")) {
                System.out.println(i + " added !");
            } else {
                System.out.println(i + " not add to Set!");
            }
        }
    }

上面的示例将一个普通的Set变成了有界容器。执行结果如下:

0 added !
1 added !
2 added !
3 added !
4 added !
5 not add to Set!

 

三、栅栏CyclicBarrier 

这个跟闭锁类似,可以通过代码设置一个『屏障』点,其它线程到达该点后才能继续,常用于约束其它线程都到达某一状态后,才允许做后面的事情。

    public class Worker extends Thread {

        private CyclicBarrier cyclicBarrier;

        public Worker(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        private void step1() {
            System.out.println(this.getName() + " step 1 ...");
        }

        private void step2() {
            System.out.println(this.getName() + " step 2 ...");
        }

        public void run() {
            step1();
            try {
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
            step2();
        }
    }

    @Test
    public void cyclicBarrierTest() throws InterruptedException, BrokenBarrierException {
        CyclicBarrier cyclicBarrier = new CyclicBarrier(11);
        for (int i = 0; i < 10; i++) {
            Worker w = new Worker(cyclicBarrier);
            w.start();
        }
        cyclicBarrier.await();

    }

这里我们假设有一个worder线程,里面有2步操作,要求所有线程完成step1后,才能继续step2. 执行结果如下:

Thread-0 step 1 ...
Thread-1 step 1 ...
Thread-2 step 1 ...
Thread-3 step 1 ...
Thread-4 step 1 ...
Thread-5 step 1 ...
Thread-6 step 1 ...
Thread-7 step 1 ...
Thread-8 step 1 ...
Thread-9 step 1 ...
Thread-9 step 2 ...
Thread-0 step 2 ...
Thread-3 step 2 ...
Thread-4 step 2 ...
Thread-6 step 2 ...
Thread-2 step 2 ...
Thread-1 step 2 ...
Thread-8 step 2 ...
Thread-7 step 2 ...
Thread-5 step 2 ...

 

四、Exchanger

如果2个线程需要交换数据,Exchanger就能派上用场了,见下面的示例:

    @Test
    public void exchangerTest() {
        Exchanger<String> exchanger = new Exchanger<>();

        Thread t1 = new Thread(() -> {
            String temp = "AAAAAA";
            System.out.println("thread 1 交换前:" + temp);
            try {
                temp = exchanger.exchange(temp);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("thread 1 交换后:" + temp);
        });

        Thread t2 = new Thread(() -> {
            String temp = "BBBBBB";
            System.out.println("thread 2 交换前:" + temp);
            try {
                temp = exchanger.exchange(temp);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("thread 2 交换后:" + temp);
        });

        t1.start();
        t2.start();
    }

 执行结果:

thread 1 交换前:AAAAAA
thread 2 交换前:BBBBBB
thread 2 交换后:AAAAAA
thread 1 交换后:BBBBBB

 

五、FutureTask/Future

一些很耗时的操作,可以用Future转化成异步,不阻塞后续的处理,直到真正需要返回结果时调用get拿到结果

    @Test
    public void futureTaskTest() throws ExecutionException, InterruptedException, TimeoutException {

        Callable<String> callable = () -> {
            System.out.println("很耗时的操作处理中。。。");
            Thread.sleep(5000);
            return "done";
        };

        FutureTask<String> futureTask = new FutureTask<>(callable);

        System.out.println("就绪。。。");
        new Thread(futureTask).start();
        System.out.println("主线程其它处理。。。");
        System.out.println(futureTask.get());
        System.out.println("处理完成!");

        System.out.println("-----------------");

        System.out.println("executor 就绪。。。");
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        Future<String> future = executorService.submit(callable);
        System.out.println(future.get(10, TimeUnit.SECONDS));
    }

 执行结果:

就绪。。。
主线程其它处理。。。
很耗时的操作处理中。。。
done
处理完成!
-----------------
executor 就绪。。。
很耗时的操作处理中。。。
done

 

六、阻塞队列BlockingQueue

阻塞队列可以在线程间实现生产者-消费者模式。比如下面的示例:线程producer模拟快速生产数据,而线程consumer模拟慢速消费数据,当达到队列的上限时(即:生产者产生的数据,已经放不下了),队列就堵塞住了。

@Test
    public void blockingQueueTest() throws InterruptedException {
        final BlockingQueue<String> blockingDeque = new ArrayBlockingQueue<>(5);

        Thread producer = new Thread() {
            public void run() {
                Random rnd = new Random();
                while (true) {
                    try {
                        int i = rnd.nextInt(10000);
                        blockingDeque.put(i + "");
                        System.out.println(this.getName() + " 产生了一个数字:" + i);
                        Thread.sleep(rnd.nextInt(50));//模拟生产者快速生产
                    } catch (InterruptedException e) {
                        Thread.currentThread().interrupt();
                    }
                }
            }
        };
        producer.setName("producer 1");


        Thread consumer = new Thread() {
            public void run() {
                while (true) {
                    Random rnd = new Random();
                    try {

                        String i = blockingDeque.take();
                        System.out.println(this.getName() + " 消费了一个数字:" + i);
                        Thread.sleep(rnd.nextInt(10000));//消费者模拟慢速消费
                    } catch (InterruptedException e) {
                        Thread.currentThread().interrupt();
                    }
                }
            }
        };
        consumer.setName("consumer 1");

        producer.start();
        consumer.start();

        while (true) {
            Thread.sleep(100);
        }
    }

执行结果:

producer 1 产生了一个数字:6773
consumer 1 消费了一个数字:6773
producer 1 产生了一个数字:4456
producer 1 产生了一个数字:8572
producer 1 产生了一个数字:5764
producer 1 产生了一个数字:2874
producer 1 产生了一个数字:780 # 注意这里就已经堵住了,直到有消费者消费一条数据,才能继续生产
consumer 1 消费了一个数字:4456
producer 1 产生了一个数字:4193

目录
相关文章
|
7天前
|
安全 Java Go
Java vs. Go:并发之争
【4月更文挑战第20天】
13 1
|
7天前
|
数据采集 存储 Java
高德地图爬虫实践:Java多线程并发处理策略
高德地图爬虫实践:Java多线程并发处理策略
|
1天前
|
Java
简单的 Java 计算器示例
这是一个Java计算器程序,接收用户输入的两个数字和一个运算符(+,-,*,/),通过`Scanner`获取输入,使用`switch`进行计算。当运算符为除法时,检查除数是否为0,防止除零错误。最后,它打印出计算结果。
3 0
|
2天前
|
算法 安全 Java
性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
【4月更文挑战第28天】性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
14 1
性能工具之 JMeter 自定义 Java Sampler 支持国密 SM2 算法
|
3天前
|
Arthas 监控 IDE
去哪儿网开源的一个对应用透明,无侵入的Java应用诊断工具
今天 V 哥给大家带来一款开源工具Bistoury,Bistoury 是去哪儿网开源的一个对应用透明,无侵入的java应用诊断工具,用于提升开发人员的诊断效率和能力。
|
5天前
|
Java
Java 事件驱动编程:概念、优势与实战示例
【4月更文挑战第27天】事件驱动编程是一种编程范式,其中程序的执行流程由外部事件的发生而触发或驱动。
12 0
|
5天前
|
Java 程序员
Java 异步编程:概念、优势与实战示例
【4月更文挑战第27天】在现代软件开发中,异步编程是一种重要的编程范式,特别适用于处理长时间运行的任务,如网络通信、文件操作等。
12 0
|
5天前
|
Java 数据处理 API
Java 函数式编程:概念、优势与实战示例
【4月更文挑战第27天】函数式编程(Functional Programming,简称 FP)是一种编程范式,它将计算视为数学函数的求值并避免使用程序状态以及可变数据。
10 1
|
8天前
|
Java API
[Java 并发基础]多线程编程
[Java 并发基础]多线程编程
|
8天前
|
安全 Java 调度
[Java并发基础] 共享内存
[Java并发基础] 共享内存