Android 下使用tcpdump网络抓包方法

简介: Android 下使用tcpdump网络抓包方法 抓包需要tcpdump以及Root权限,tcpdump在本文后有下载。 首先把tcpdump传进手机,用adb命令(放SD卡有时会有问题,我一次可以用,但刷了另一个ROM后就不行): adb push tcpdump /da...

Android 下使用tcpdump网络抓包方法

抓包需要tcpdump以及Root权限,tcpdump在本文后有下载。
首先把tcpdump传进手机,用adb命令(放SD卡有时会有问题,我一次可以用,但刷了另一个ROM后就不行):

adb push tcpdump /data/local/

然后电脑连接手机,打开CMD,执行:

adb shell
chmod 6755 /data/local/tcpdump
cd /data/local/
./tcpdump -p -vv -s 0 -w /sdcard/capture.pcap

如果要停止,按ctrl+c。没有root权限会提示no suitable device found
停止后,用WireShark(电脑上的一个抓包工具,自行搜索下载),打开SD卡里的capture.pcap,就可以看到数据包了。
可以用adb pull /sdcard/capture.pcap直接把文件导出到电脑上

tcpdump下载:

免费下载地址在 

用户名与密码都是www.linuxidc.com

具体下载目录在 /2013年资料/8月/21日/Android 下使用tcpdump网络抓包方法

下载方法见 

相关阅读:

Linux网络十分有用的两个命令ip和TcpDump 

Linux下抓包工具TcpDump使用 

Linux TcpDump命令详解 

Linux操作系统TcpDump抓包分析详解 

相关文章
|
2天前
|
机器学习/深度学习 数据采集 人工智能
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
GeneralDyG 是南洋理工大学推出的通用动态图异常检测方法,通过时间 ego-graph 采样、图神经网络和时间感知 Transformer 模块,有效应对数据多样性、动态特征捕捉和计算成本高等挑战。
30 18
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
|
29天前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
68 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
21天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
3月前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
97 15
Android 系统缓存扫描与清理方法分析
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
161 1
|
2月前
|
安全 算法 网络安全
量子计算与网络安全:保护数据的新方法
量子计算的崛起为网络安全带来了新的挑战和机遇。本文介绍了量子计算的基本原理,重点探讨了量子加密技术,如量子密钥分发(QKD)和量子签名,这些技术利用量子物理的特性,提供更高的安全性和可扩展性。未来,量子加密将在金融、政府通信等领域发挥重要作用,但仍需克服量子硬件不稳定性和算法优化等挑战。
|
3月前
|
网络协议 Shell 网络安全
解决两个 Android 模拟器之间无法网络通信的问题
让同一个 PC 上运行的两个 Android 模拟器之间能相互通信,出(qiong)差(ren)的智慧。
38 3
|
3月前
|
机器学习/深度学习 计算机视觉
TPAMI 2024:计算机视觉中基于图神经网络和图Transformers的方法和最新进展
【10月更文挑战第3天】近年来,图神经网络(GNNs)和图Transformers在计算机视觉领域取得显著进展,广泛应用于图像识别、目标检测和场景理解等任务。TPAMI 2024上的一篇综述文章全面回顾了它们在2D自然图像、视频、3D数据、视觉与语言结合及医学图像中的应用,并深入分析了其基本原理、优势与挑战。GNNs通过消息传递捕捉非欧式结构,图Transformers则结合Transformer模型提升表达能力。尽管存在图结构构建复杂和计算成本高等挑战,但这些技术仍展现出巨大潜力。论文详细内容见:https://arxiv.org/abs/2209.13232。
203 3
|
4月前
|
ARouter 测试技术 API
Android经典面试题之组件化原理、优缺点、实现方法?
本文介绍了组件化在Android开发中的应用,详细阐述了其原理、优缺点及实现方式,包括模块化、接口编程、依赖注入、路由机制等内容,并提供了具体代码示例。
60 2
|
5月前
|
存储 缓存 网络协议
网络丢包排查方法
网络丢包排查方法

热门文章

最新文章