通过reducer联合产生宽表

简介:

public class ReducerJoin {

public static class ValueFlag implements Writable {
    private String value;
    private String flag;

    public String getValue() {
        return value;
    }

    public void setValue(String value) {
        this.value = value;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }

    public void write(DataOutput out) throws IOException {
        out.writeUTF(value);
        out.writeUTF(flag);

    }

    public void readFields(DataInput in) throws IOException {
        this.value = in.readUTF();
        this.flag = in.readUTF();

    }

}

// map读取两个文件 根据来源把每个kv对打上标签 输出给reduce可以必须是关联字段
public static class ReducerJoinMap extends Mapper<LongWritable, Text, Text, ValueFlag> {
    private FileSplit fileSplit;
    private String fileName;
    private String[] infos;
    private Text oKey = new Text();
    private ValueFlag oValue = new ValueFlag();

    @Override
    protected void setup(Mapper<LongWritable, Text, Text, ValueFlag>.Context context)
            throws IOException, InterruptedException {
        fileSplit = (FileSplit) context.getInputSplit();
        if (fileSplit.getPath().toString().contains("user-logs-large.txt")) {
            fileName = "userLogsLarge";
        } else if (fileSplit.getPath().toString().contains("user_info.txt")) {
            fileName = "userInfo";
        }

    }

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, ValueFlag>.Context context)
            throws IOException, InterruptedException {
        infos = value.toString().split("\\s");

        oValue.setFlag(fileName);
        if (fileName.equals("userLogsLarge")) {
            // 解析user-logs-large.txt
            oKey.set(infos[0]);
            oValue.setValue(infos[1] + "\t" + infos[2]);
            context.write(oKey, oValue);
        } else if (fileName.equals("userInfo")) {
            // 解析user_infos.txt
            oKey.set(infos[0]);
            oValue.setValue(infos[1] + "\t" + infos[2]);
            context.write(oKey, oValue);
        }

    }

}

// 接受map发送过来的kv队 根据value中的flag把同一个key对应的value分组
// 那么两组中的数据就是分别来自两张表中的数据 对这两组数据做笛卡尔乘机即完成关联
public static class ReducerJoinReducer extends Reducer<Text, ValueFlag, AvroKey<UserActionLog>, NullWritable> {

    private List<String> userLogsLargeList;
    private List<String> userInfosList;
    private NullWritable outValue = NullWritable.get();
    private AvroKey<UserActionLog> outKey = new AvroKey<UserActionLog>();
    private String[] infos;

    @Override
    protected void reduce(Text key, Iterable<ValueFlag> values,
            Reducer<Text, ValueFlag, AvroKey<UserActionLog>, NullWritable>.Context context)
            throws IOException, InterruptedException {

        userLogsLargeList = new ArrayList<String>();
        userInfosList = new ArrayList<String>();

        for (ValueFlag value : values) {

            if (value.getFlag().equals("userLogsLarge")) {
                userLogsLargeList.add(value.getValue());
            } else if (value.getFlag().equals("userInfo")) {
                userInfosList.add(value.getValue());
            }
        }
        // 对两组中的数据进行笛卡尔乘积
        for (String userlog : userLogsLargeList) {
            for (String userinfo : userInfosList) {
                // 构建一个useractionLog对象
                UserActionLog.Builder build = UserActionLog.newBuilder();

                // 从userlog中提取actiontyoe和ipaddress
                infos = userlog.split("\\s");
                build.setActionType(infos[0]);
                build.setIpAddress(infos[1]);
                // 从userinfo 提取gender 和privince
                infos = userinfo.split("\\s");
                if (infos[0].equals("man")) {
                    build.setGender(0);
                } else {
                    build.setGender(1);
                }
                build.setProvience(infos[1]);
                build.setUserName(key.toString());
                UserActionLog userActionLog = build.build();
                // 吧userAction封装到Avrokey中
                outKey.datum(userActionLog);
                context.write(outKey, outValue);
            }
        }

    }

}

public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

    Configuration configuration = new Configuration();
    Job job = Job.getInstance(configuration);
    job.setJarByClass(ReducerJoin.class);
    job.setJobName("reducer联合");

    job.setMapperClass(ReducerJoinMap.class);
    job.setReducerClass(ReducerJoinReducer.class);

    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(ValueFlag.class);
    job.setOutputKeyClass(AvroKey.class);
    job.setOutputValueClass(NullWriter.class);
    //设置输出的格式是avrokey
    job.setOutputFormatClass(AvroKeyOutputFormat.class);
    //设置输出key的schema
    AvroJob.setOutputKeySchema(job, UserActionLog.SCHEMA$);
    FileInputFormat.addInputPath(job, new Path("/mapjoin"));
    Path outputPath = new Path("/ReducerJoin");
    outputPath.getFileSystem(configuration).delete(outputPath, true);
    FileOutputFormat.setOutputPath(job, outputPath);

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}

}

相关文章
|
SQL 大数据 开发工具
大数据Hive窗口函数应用实例 1
大数据Hive窗口函数应用实例
91 0
|
SQL 大数据 开发工具
大数据Hive窗口函数应用实例 2
大数据Hive窗口函数应用实例
153 0
|
3月前
|
消息中间件 SQL Kafka
实时计算 Flink版产品使用问题之使用StarRocks作为Lookup Join的表是否合适
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 存储 NoSQL
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
本文投稿自贝壳家装数仓团队,在结合家装业务场景下所探索出的一种基于 Flink+Paimon 的排序方案。这种方案可以在实时环境对全量数据进行准确的分组排序,同时减少对内存资源的消耗。在这一方案中,引入了“事件时间分段”的概念,以避免 Flink State 中冗余数据对排序结果的干扰,在保证排序结果准确性的同时,减少了对内存的消耗。并且基于数据湖组件 Paimon 的聚合模型和 Audit Log 数据在数据湖内构建了拉链表,为排序结果提供了灵活的历史数据基础。
28778 8
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
|
4月前
|
JSON 关系型数据库 MySQL
实时计算 Flink版产品使用问题之对于百亿数据的三张表关联,该如何操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行DWS层的实时聚合计算时,遇到多次更新同一个字段的情况,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL 关系型数据库 数据处理
实时计算 Flink版产品使用问题之如何在外部查询某个job中的表数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4月前
|
SQL Java 数据处理
实时计算 Flink版产品使用问题之开窗函数(WindowFunction)如何做开窗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
存储 分布式计算 大数据
大数据计算MaxComputerds外部表是不是不能创建分区的?
大数据计算MaxComputerds外部表是不是不能创建分区的?
68 2
|
5月前
|
存储 SQL BI
深入解析实时数仓Doris:Rollup上卷表与查询
深入解析实时数仓Doris:Rollup上卷表与查询