《中国人工智能学会通讯》——11.7 场景化个性化的地理位置推荐系统

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.7节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.7 场景化个性化的地理位置推荐系统

基于地理位置的社会媒体网络服务的出现 , 例如 Foursquare、Facebook Places 和大众点评,为人们提供了一个产生和分享在物理位置进行评价的活动的便捷平台。全面地理解这种基于地理位置的用户评分行为对于进行很多应用十分重要 , 例如个性化推荐、地理位置探索和服务营销。文献 [8] 已经做了很多努力进行从用户评分历史数据中挖掘知识帮助用户找到有兴趣的地理物品。但是,利用用户的地理位置行为历史数据推断地理物品的评分进行推荐仍是一个具有挑战性的问题,包括数据稀疏性、用户内在兴趣与地理特色影响、时空性影响。本文通过探究用户地理位置评分行为研究场景化个性化的地理位置推荐问题。具体而言,提出了一个场景化个性化的地理位置推荐系统(context-aware personalized location recommendation system,CAPLRS),其利用用户与地理物品之间的关联关系、地理物品的地理位置与内容信息和时空场景信息来缓解数据稀疏性问题,并做出准确的地理位置推荐。如图 3(a) 所示,CAPLRS 由离线建模与在线推荐两部分组成。离线部分的核心模块是一个场景感知回归混合模型(context-aware regression mixturemodel, CARM, 如图 3(b) 所示),其设计用于对用户地理位置评分行为进行建模用于推断用户对地理物品的评分。CARM 通过同时考虑用户内在兴趣、地理区域偏好和时空场景影响,在一个统一的模型框架内,对用户在地理物品上的决策行为过程进行建模。CARM 能够自动地从用户的地理位置评分历史数据中,学习得到潜在主题、用户兴趣、地理区域偏好和场景影响因素。给定一个查询用户以及其对应的查询场景信息,即地理位置区域和时间节点,在线推荐部分为在地理区域的每一个地理物品计算一个排序分数。CARM 通过自动合并 CARM,离线学习得到的场景影响因素、用户的兴趣和地理区域的偏好进行推荐。我们在两个真实来源于 Dianping和 Foursquare 的数据集进行了充分的实验评估提出的推荐系统性能。实验结果显示 , 所提的推荐系统CAPLRS 在推荐效果和效率上的优越性。此外,实证分析结果也展示了 CAPLRS 有清晰的意义解释性,这对于增强人们对推荐系统的信任十分重要。

image

相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能浪潮下的未来工作场景
随着人工智能技术的飞速发展,它正在逐步融入我们的工作和生活之中。本文将探讨人工智能如何改变未来的工作环境,以及我们应如何准备迎接这一变革。文章通过分析人工智能的发展趋势、对各行各业的影响,以及个人和组织应对策略,旨在为读者提供对未来工作场景的深刻洞察。
|
12天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
194 32
|
7天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
23天前
|
人工智能 自然语言处理 算法
【AI问爱答-双十一返场周直播】AI产品专家直播解读重点AI应用场景怎么用?
阿里云【AI问爱答】栏目强势回归,11月25日至28日每晚19:00,连续四天直播,涵盖AI营销、企业办公、社交娱乐及大模型推理调优四大主题,助您深入了解AI应用,解决实际问题。欢迎预约观看!
|
23天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
60 4
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,涵盖AI系统的初步设计原则,并深入探讨了AI在计算机视觉、自然语言处理和音频处理三个领域的具体应用。同时,文中还介绍了AI在金融、医疗、教育、互联网及自动驾驶等行业中的广泛应用,强调了AI基础设施的重要性及其对企业竞争力的影响。通过阅读本文,读者不仅可以获得系统的AI知识,还能激发对AI系统研究的兴趣,掌握相关的设计原则与方法。
55 1
|
3月前
|
人工智能 Prometheus Cloud Native
新场景、新能力,AI-native 时代的可观测革新
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
210 17
|
2月前
|
存储 数据采集 人工智能
数据湖面向AI场景的进化
对象存储OSS作为云上数据湖,被广泛应用在商业智能、数据决策、广告推荐等大数据分析的场景上。随着AI workload的不断增长,OSS数据湖也在随着workload的变化不断演进。
180 6
|
1月前
|
人工智能 安全 Cloud Native