《中国人工智能学会通讯》——11.7 场景化个性化的地理位置推荐系统

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.7节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.7 场景化个性化的地理位置推荐系统

基于地理位置的社会媒体网络服务的出现 , 例如 Foursquare、Facebook Places 和大众点评,为人们提供了一个产生和分享在物理位置进行评价的活动的便捷平台。全面地理解这种基于地理位置的用户评分行为对于进行很多应用十分重要 , 例如个性化推荐、地理位置探索和服务营销。文献 [8] 已经做了很多努力进行从用户评分历史数据中挖掘知识帮助用户找到有兴趣的地理物品。但是,利用用户的地理位置行为历史数据推断地理物品的评分进行推荐仍是一个具有挑战性的问题,包括数据稀疏性、用户内在兴趣与地理特色影响、时空性影响。本文通过探究用户地理位置评分行为研究场景化个性化的地理位置推荐问题。具体而言,提出了一个场景化个性化的地理位置推荐系统(context-aware personalized location recommendation system,CAPLRS),其利用用户与地理物品之间的关联关系、地理物品的地理位置与内容信息和时空场景信息来缓解数据稀疏性问题,并做出准确的地理位置推荐。如图 3(a) 所示,CAPLRS 由离线建模与在线推荐两部分组成。离线部分的核心模块是一个场景感知回归混合模型(context-aware regression mixturemodel, CARM, 如图 3(b) 所示),其设计用于对用户地理位置评分行为进行建模用于推断用户对地理物品的评分。CARM 通过同时考虑用户内在兴趣、地理区域偏好和时空场景影响,在一个统一的模型框架内,对用户在地理物品上的决策行为过程进行建模。CARM 能够自动地从用户的地理位置评分历史数据中,学习得到潜在主题、用户兴趣、地理区域偏好和场景影响因素。给定一个查询用户以及其对应的查询场景信息,即地理位置区域和时间节点,在线推荐部分为在地理区域的每一个地理物品计算一个排序分数。CARM 通过自动合并 CARM,离线学习得到的场景影响因素、用户的兴趣和地理区域的偏好进行推荐。我们在两个真实来源于 Dianping和 Foursquare 的数据集进行了充分的实验评估提出的推荐系统性能。实验结果显示 , 所提的推荐系统CAPLRS 在推荐效果和效率上的优越性。此外,实证分析结果也展示了 CAPLRS 有清晰的意义解释性,这对于增强人们对推荐系统的信任十分重要。

image

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能浪潮下的未来工作场景
随着人工智能技术的飞速发展,它正在逐步融入我们的工作和生活之中。本文将探讨人工智能如何改变未来的工作环境,以及我们应如何准备迎接这一变革。文章通过分析人工智能的发展趋势、对各行各业的影响,以及个人和组织应对策略,旨在为读者提供对未来工作场景的深刻洞察。
|
1月前
|
存储 数据采集 人工智能
数据湖面向AI场景的进化
对象存储OSS作为云上数据湖,被广泛应用在商业智能、数据决策、广告推荐等大数据分析的场景上。随着AI workload的不断增长,OSS数据湖也在随着workload的变化不断演进。
115 5
|
2月前
|
人工智能 Prometheus Cloud Native
新场景、新能力,AI-native 时代的可观测革新
借助 AI-native 可观测解决方案,阿里云为用户提供开箱即用的覆盖大模型应用、大模型到基础设施的全链路实时观测、告警与诊断能力,帮助企业在复杂的数字化转型过程中更有效地确保资源的高效利用与业务的持续成功。
164 17
|
2月前
|
机器学习/深度学习 人工智能 运维
|
2月前
|
人工智能 算法 大数据
懂场景者得AI,瓴羊发布年度产品智能化战略
9月20日,瓴羊智能科技(以下简称瓴羊)在2024云栖大会上举办了“Data × AI:企业服务智能化,价值增长新动能”专场论坛。阿里巴巴集团副总裁、瓴羊智能科技CEO 朋新宇在会上发布年度产品智能化战略:“(算法 + 算力 + 数据) x 场景 ”,强调企业必须重视场景,只有通过解构场景、重构业务,才能真正拥抱AI,带来突破性增长。
|
23天前
|
人工智能 NoSQL 机器人
MongoDB Atlas与YoMio.AI近乎完美适配:推理更快速、查询更灵活、场景更丰富
随着MongoDB的新发布和革新,YoMio.AI的“闪电式发展”值得期待。
|
30天前
|
机器学习/深度学习 人工智能 搜索推荐
用AI技术打造个性化新闻推荐系统
【10月更文挑战第7天】本文将介绍如何使用AI技术构建一个个性化的新闻推荐系统。我们将从数据收集、处理,到模型训练和优化,最后实现推荐系统的全过程进行讲解。通过这篇文章,你将了解到如何利用机器学习和深度学习技术,为用户提供精准的新闻推荐。
40 0
|
3月前
|
人工智能 文字识别 算法
打造全场景、跨领域、多模态的AI工作流 | 开源图像标注工具 X-AnyLabeling v2.4.0 正式发布!
X-AnyLabeling是一款强大的辅助标注工具,集成了AI推理引擎和丰富功能,为图像数据工程师提供一站式解决方案。它支持图像和视频文件的自动标注,提供了包括矩形框、多边形在内的七种标注样式,适应多样化的训练场景需求。X-AnyLabeling内置了多种SOTA级AI模型,如YOLO、SAM系列等,并支持GPU加速和多种数据集格式的导入导出,确保高效的数据处理。此外,它还具备良好的跨平台兼容性,可在多种操作系统上运行,并提供详尽的帮助文档和社区支持,帮助用户轻松上手并解决使用过程中遇到的问题。
258 2
打造全场景、跨领域、多模态的AI工作流 | 开源图像标注工具 X-AnyLabeling v2.4.0 正式发布!
|
3月前
|
存储 人工智能 数据处理
面向AI场景的数据处理和数据检索
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
304 15
下一篇
无影云桌面