C语言中的字节对齐

简介:

一、什么是字节对齐
一个基本类型的变量在内存中占用n个字节,则该变量的起始地址必须能够被n整除,即: 存放起始地址 % n = 0,那么,就成该变量是字节对齐的;对于结构体、联合体而言,这个n取其所有基本类型的成员中占用空间字节数最大的那个;
内存空间是以字节为基本单位进行划分的,从理论上讲,似乎对任何类型的变量的访问都可以从任何地址处开始,但实际情况是在访问特定类型变量的时候经常是从特定的内存地址处开始访问,这就需要各种类型的数据只能按照一定的规则在空间上排列,而不是顺序的一个接一个地排放;究其原因,是为了使不同架构的CPU可以提高访问内存的速度,就规定了对于特定类型的数据只能从特定的内存位置处开始访问;所以,各种类型的数据只能按照相应的规则在内存空间上排放,而不能顺序地、连续地、一个一个地排放;这就是内存对齐;
二、为什么需要字节对齐
由于各种硬件平台对存储空间的处理上有很大的不同;一些平台对某些特定类型的数据只能从某个特定内存地址处开始访问;比如:有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程时就必须保证字节对齐;其它平台可能没有这种情况,但最常见的是,如果不按照适合其平台要求对数据进行对齐,会在存取效率上带来损失;比如,有些平台每次读取数据都是从偶地址处开始,如果一个int(假设为32位系统)型数据从偶地址处开始存放,那么只需要一个读指令周期就可以完全读出这个32bit的int型数据,相反,如果这个32bit的int型数据是从奇地址处开始存放,那么就需要两个读指令周期才能完全读出这个32bit的int数据,并且还需要对这两次读出的结果的高低字节进行重新拼凑才能得到正确的32bit数据;这个时候,CPU的读取效率明显下降;
三、字节对齐规则
预处理指令#pragma pack(align_value)用于指定对齐值,而预处理指令#pragma pack()用于取消上次设定的对齐值,恢复默认对齐值;
字节对齐是针对基本类型变量的;基本类型变量有:char、unsigned char、short、unsigned short、int、unsigned int、long、unsigned long、long long、unsigned long long、float、double,等等;所以,对于结构体的对齐也只能按照其成员变量中的基本类型来对齐了;
有四个概念需要理解:
A、数据类型自身的对齐值:
   是指对该数据类型使用sizeof()操作符进行操作所得到的大小(单位,字节);比如,对于[unsigned] char类型的数据,其自身对齐值为1字节;对于[unsigned] short类型的数据,其自身对齐值是2字节;对于[unsigned] int、[unsigned] long、[unsigned] long long、float、double等数据类型,其自身对齐值是4字节;
B、结构体、联合体、类的自身对齐值:
   是指其所有基本类型的成员中,自身对齐值最大的那个值;如果这些复合类型中有嵌套类型或复合类型的变量,则需要把这些嵌套的类型或复合类型的变量拆解成基本类型的成员之后再对齐;
C、指定对齐值:
   是指使用预处理指令#pragma pack(align_value)指定的对齐值align_value;
D、数据成员、结构体和类的有效对齐值:
   是指其自身对齐值和指定对齐值中较小的那个值;
其中,有效对齐值是最终用来决定数据存放地址方式的值,最重要;设定有效对齐值为N,就表示"对齐在N字节上",也就是说,该数据的"存放起始地址%N=0";

因此,每个类型的数据的有效对齐值就是其自身对齐值(通常是这个类型的大小)和指定对齐值(不指定则取默认值)中较小的那个值,并且结构体自身对齐值是其所有成员中自身对齐值最大的那个值;

字节对齐的细节与编译器的实现有关,但一般来说,结构体需要满足以下几个准则:
1).从结构体外部来看,结构体变量的首地址能够被其最宽基本成员的大小整除;从结构体内部来看,它的第一个数据成员的地址相对于整个结构体首地址的偏移量为0,也就是说,结构体的第一个数据成员存放在偏移量为0的地方;
2).结构体中的每个数据成员的有效对齐值都取其自身对齐值和指定对齐值中的较小的那个对齐值;或者说是,结构体中的每个数据成员相对于结构体首地址的偏移量都是该数据成员大小和指定对齐值中较小的那个值(或有效对齐值)的整数倍,如有需要,编译器会在数据成员之间加上填充字节;
3).如果结构体中还有嵌套的结构体或结构体变量,那么就要把这些嵌套进去的结构体或结构体变量拆成基本类型成员,并取其最长的基本类型成员的对齐方式;
4).结构体整体的有效对齐值必须为其最宽基本类型成员大小的整数倍;或者说是,结构体整体的大小为结构体中最宽基本类型成员大小的整数倍,如有需要,编译器会在最末一个成员之后加上填充字节;换句话说是,结构体整体的有效对齐值按照结构体中最宽基本类型成员的大小和指定对齐值中较小的那个值进行;
注意:如果指定对齐值大于自身对齐值,则指定对齐值无效;

例1:不带嵌套的
#pragma pack(4) //指定按照4字节对齐
struct TestA
{
  int   a;  //第一个成员,自身长4,#pragma pack(4),取较小值,按照4字节对齐,放在[0,3]偏移的位置;
  char  b;  //第二个成员,自身长1,#pragma pack(4),取较小值,按照1字节对齐,放在[4]偏移的位置;
  short c;  //第三个成员,自身长1,#pragma pack(4),取较小值,按照2字节对齐,偏移量必须是2的整数倍,故,存放在[6,7]偏移的位置;
  char  d;  //第四个成员,自身长1,#pragma pack(4),取较小值,按照1字节对齐,放在[8]偏移的位置;
};
#pragma pack() //取消4字节对齐,恢复默认对齐值;
因此,整个结构体占用的有效字节为9个字节;由于结构体整体的对齐值和大小是其最宽基本类型成员大小的整数倍,即:按照最宽基本类型成员大小和指定对齐值中较小的值对齐的;因为结构体最宽基本类型成员的大小是4字节,其有效对齐值也是4字节,而9字节按照4字节圆整的结果是12字节,所以,sizeof(TestA)=12;
#pragma pack(2) //指定按照2字节对齐
struct TestA
{
  int   a;  //第一个成员,自身长4,#pragma pack(4),取较小值,按照2字节对齐,放在[0,3]偏移的位置;
  char  b;  //第二个成员,自身长1,#pragma pack(2),取较小值,按照1字节对齐,放在[4]偏移的位置;
  short c;  //第三个成员,自身长1,#pragma pack(2),取较小值,按照2字节对齐,偏移量必须是2的整数倍,故,存放在[6,7]偏移的位置;
  char  d;  //第四个成员,自身长1,#pragma pack(2),取较小值,按照1字节对齐,放在[8]偏移的位置;
};
#pragma pack() //取消4字节对齐,恢复默认对齐值;
可以看出,只是改变了一下结构体之间的对齐方式,从4字节对齐改为2字节对齐;结果就不一样了;
整个结构体所占用的有效字节数仍然是9字节,但是结构体整体的大小就变了,按照最宽基本类型成员大小和指定对齐值中较小的值对齐;结构体中最宽基本类型成员的大小事4字节,而指定对齐值是2字节对齐,取最小值2,所以,最后,整个结构体的大小就是9字节按照2字节圆整(取2的整数倍),于是,sizeof(TestA)=10;
例2:带嵌套的
#pragma pack(2)
struct A 

  char c;   //第一个成员,自身长1,#pragma pack(2),取较小值,按照1字节对齐,放在[0]偏移的位置;
  int  i;   //第二个成员,自身长4,#pragma pack(2),取较小值,按照2字节对齐,放在[2,5]偏移的位置;
}; 
struct B 

  char c1;  //第一个成员,自身长1,#pragma pack(2),取较小值,按照1字节对齐,放在[0]偏移的位置;
  A    s;   //第二个成员,自身长6,#pragma pack(2),取较小值,按照2字节对齐,放在[2,7]偏移的位置;
  char c2;  //第三个成员,自身长1,#pragma pack(2),取较小值,按照1字节对齐,存放在[8]偏移的位置;
}; 
#pragma pack()
结构体A占用的有效字节数是6字节;结构体A整体的大小要取其最宽基本类型成员大小和指定对齐值中较小的那个值的整数倍,最宽基本类型成员大小为4字节,指定对齐值为2字节,所以,6取较小的值2字节的整数倍为6字节;最终,结构体A的大小为:sizeof(A)=6;
结构体B占用的有效字节数是9字节;结构体B整体的大小要取其最宽基本类型成员大小和指定对齐值中较小的那个值的整数倍,最宽基本类型成员大小为6字节,指定对齐值为2字节,所以,9取较小的值2字节的整数倍为10字节;最终,结构体B的大小为:sizeof(B)=10;
四、总结
设置对齐方式有两种方法;
第一种方法:
#pragma pack(n),指定按照n字节对齐;
#pragma pack(),取消自定义的对齐值;
第二种方法:
__attribute__((aligned(n))):让所作用的结构体成员对齐在n字节自然边界上;如果结构体中有成员的长度大于n,则按照最大成员的长度来对齐;即:按照机器能允许该类的的最大长度来对齐;这个恰好与#pragma pack(n)指令的相反;
__attribute__((packed)):取消结构体在编译过程中的优化对齐,按照实际占用字节数进行对齐,等价于指令#pragma pack(1),即,按照1字节对齐;
其中,n=1,2,4,8,16,......等;
第一种方法比较常见

目录
相关文章
|
C语言
C语言字节对齐
文章最后本人做了一幅图,一看就明白了,这个问题网上讲的不少,但是都没有把问题说透。   一、概念       对齐跟数据在内存中的位置有关。如果一个变量的内存地址正好位于它长度的整数倍,他就被称做自然对齐。
874 0
|
15天前
|
存储 算法 C语言
【C语言程序设计——函数】素数判定(头歌实践教学平台习题)【合集】
本内容介绍了编写一个判断素数的子函数的任务,涵盖循环控制与跳转语句、算术运算符(%)、以及素数的概念。任务要求在主函数中输入整数并输出是否为素数的信息。相关知识包括 `for` 和 `while` 循环、`break` 和 `continue` 语句、取余运算符 `%` 的使用及素数定义、分布规律和应用场景。编程要求根据提示补充代码,测试说明提供了输入输出示例,最后给出通关代码和测试结果。 任务核心:编写判断素数的子函数并在主函数中调用,涉及循环结构和条件判断。
52 23
|
15天前
|
算法 C语言
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】
本文档介绍了如何编写两个子函数,分别求任意两个整数的最大公约数和最小公倍数。内容涵盖循环控制与跳转语句的使用、最大公约数的求法(包括辗转相除法和更相减损术),以及基于最大公约数求最小公倍数的方法。通过示例代码和测试说明,帮助读者理解和实现相关算法。最终提供了完整的通关代码及测试结果,确保编程任务的成功完成。
45 15
|
15天前
|
C语言
【C语言程序设计——函数】亲密数判定(头歌实践教学平台习题)【合集】
本文介绍了通过编程实现打印3000以内的全部亲密数的任务。主要内容包括: 1. **任务描述**:实现函数打印3000以内的全部亲密数。 2. **相关知识**: - 循环控制和跳转语句(for、while循环,break、continue语句)的使用。 - 亲密数的概念及历史背景。 - 判断亲密数的方法:计算数A的因子和存于B,再计算B的因子和存于sum,最后比较sum与A是否相等。 3. **编程要求**:根据提示在指定区域内补充代码。 4. **测试说明**:平台对代码进行测试,预期输出如220和284是一组亲密数。 5. **通关代码**:提供了完整的C语言代码实现
54 24
|
11天前
|
存储 C语言
【C语言程序设计——函数】递归求斐波那契数列的前n项(头歌实践教学平台习题)【合集】
本关任务是编写递归函数求斐波那契数列的前n项。主要内容包括: 1. **递归的概念**:递归是一种函数直接或间接调用自身的编程技巧,通过“俄罗斯套娃”的方式解决问题。 2. **边界条件的确定**:边界条件是递归停止的条件,确保递归不会无限进行。例如,计算阶乘时,当n为0或1时返回1。 3. **循环控制与跳转语句**:介绍`for`、`while`循环及`break`、`continue`语句的使用方法。 编程要求是在右侧编辑器Begin--End之间补充代码,测试输入分别为3和5,预期输出为斐波那契数列的前几项。通关代码已给出,需确保正确实现递归逻辑并处理好边界条件,以避免栈溢出或结果
48 16
|
10天前
|
存储 编译器 C语言
【C语言程序设计——函数】分数数列求和2(头歌实践教学平台习题)【合集】
函数首部:按照 C 语言语法,函数的定义首部表明这是一个自定义函数,函数名为fun,它接收一个整型参数n,用于指定要求阶乘的那个数,并且函数的返回值类型为float(在实际中如果阶乘结果数值较大,用float可能会有精度损失,也可以考虑使用double等更合适的数据类型,这里以float为例)。例如:// 函数体代码将放在这里函数体内部变量定义:在函数体中,首先需要定义一些变量来辅助完成阶乘的计算。比如需要定义一个变量(通常为float或double类型,这里假设用float。
22 3
|
10天前
|
存储 算法 安全
【C语言程序设计——函数】分数数列求和1(头歌实践教学平台习题)【合集】
if 语句是最基础的形式,当条件为真时执行其内部的语句块;switch 语句则适用于针对一个表达式的多个固定值进行判断,根据表达式的值与各个 case 后的常量值匹配情况,执行相应 case 分支下的语句,直到遇到 break 语句跳出 switch 结构,若没有匹配值则执行 default 分支(可选)。例如,在判断一个数是否大于 10 的场景中,条件表达式为 “num> 10”,这里的 “num” 是程序中的变量,通过比较其值与 10 的大小关系来确定条件的真假。常量的值必须是唯一的,且在同一个。
12 2
|
14天前
|
存储 编译器 C语言
【C语言程序设计——函数】回文数判定(头歌实践教学平台习题)【合集】
算术运算于 C 语言仿若精密 “齿轮组”,驱动着数值处理流程。编写函数求区间[100,500]中所有的回文数,要求每行打印10个数。根据提示在右侧编辑器Begin--End之间的区域内补充必要的代码。如果操作数是浮点数,在 C 语言中是不允许直接进行。的结果是 -1,因为 -7 除以 3 商为 -2,余数为 -1;注意:每一个数据输出格式为 printf("%4d", i);的结果是 1,因为 7 除以 -3 商为 -2,余数为 1。取余运算要求两个操作数必须是整数类型,包括。开始你的任务吧,祝你成功!
46 1

热门文章

最新文章