关于大数据你必须了解的几个关键词!

简介:

大数据分析的定义:

大数据分析,即对规模巨大的数据进行分析,能够高效存储和处理海量数据、并有效达成多种分析目标的工具及技术的集合。Gartner将大数据分析定义为追求显露模式检测和发散模式检测,以及强化对过去未连接资产的使用的实践和方法,意即一套针对大数据进行知识发现的方法。通俗地讲,大数据分析技术就是大数据的收集、存储、分析和可视化的技术,是一套能够解决大数据的4V【海量(Volume)、高速(Velocity)、多变(Variety)、真实(Veracity)】问题,分析出高价值(Value)的信息的工具集合。

大数据的特点:数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律。

数据量:这个参数表示数据的数量,随着科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。

数据类型:

  • 传统企业数据(Traditionalenterprisedata):包括CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
  • 机器和传感器数据(Machine-generated/sensordata):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digitalexhaust),交易数据等。
  • 社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。

处理速度: 1秒定律,这一点也是和传统的数据挖掘技术有着本质的不同,物联网,云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

大数据分析工具:

数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,几款好用的处理工具如Hadoop、HPCC、Storm、Apache Drill、RapidMiner和Pentaho BI。工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。

大数据的应用:

大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。

  • 营销:

主要用于管理和优化各种营销活动,如交叉销售、追加销售以及基于位置的一对一营销,并及时对客户需求进行完整评估等。

  • 财政:

使用大数据技术可以预防欺诈检查、进行风险估计和管理、贸易监视、反洗钱、防止信贷风险等。

  • 保险:

为规避风险,防止欺诈行为,由大数据分析师及时分析调整工作负荷,客户价值等。

  • 零售:

1、分析商品

2、供应链管理分析

3、优化消费

  • 通讯:

推进网络优化规划,满足不同客户需求,研发并推出新产品。

分析引擎:提供连接器,处理数据库。

  • 支持大数据分析法:

面对庞杂而复杂的数据,必须有许多有效的解决方案,普通分析和高级分析都可以轻松提供集成,集中分析数据,在一个单一的平台上,满足分析引擎对营销方案的需求。

  • 电子表格工具:

ODBC连接器将客户与Microsoft Excel连接在一起,利用精湛的分析工具如Qlik,MicroStrategy,TIBCO、Jaspersoft,Tableau等,在ODBC/REST APIS的帮助下,将协调R统计编程语言添加到金属板。

  • CRM和在线营销方案:

Salesforce.com提供的著名的CRM和在线营销解决方案适合处理业务,并及时提供必要的网络分析对策。

大数据的意义和前景:

总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在人们面前。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
354 14
|
6月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
231 4
|
6月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
368 3
|
5月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
210 0
|
4月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
171 14
|
3月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
336 0