iOS自动布局框架 – Masonry详解

简介:

目前iOS开发中大多数页面都已经开始使用Interface Builder的方式进行UI开发了,但是在一些变化比较复杂的页面,还是需要通过代码来进行UI开发的。而且有很多比较老的项目,本身就还在采用纯代码的方式进行开发。

而现在iPhone和iPad屏幕尺寸越来越多,虽然开发者只需要根据屏幕点进行开发,而不需要基于像素点进行UI开发。但如果在项目中根据不同屏幕尺寸进行各种判断,写死坐标的话,这样开发起来是很吃力的。

所以一般用纯代码开发UI的话,一般都是配合一些自动化布局的框架进行屏幕适配。苹果为我们提供的适配框架有:VFL、UIViewAutoresizing、Auto Layout、Size Classes等。

其中Auto Layout是使用频率最高的布局框架,但是其也有弊端。就是在使用UILayoutConstraint的时候,会发现代码量很多,而且大多都是重复性的代码,以至于好多人都不想用这个框架。

后来Github上的出现了基于UILayoutConstraint封装的第三方布局框架Masonry,Masonry使用起来非常方便,本篇文章就详细讲一下Masonry的使用。

Masonry介绍

这篇文章只是简单介绍Masonry,以及Masonry的使用,并且会举一些例子出来。但并不会涉及到Masonry的内部实现,以后会专门写篇文章来介绍其内部实现原理,包括顺便讲一下链式语法。

什么是Masonry

Masonry是一个对系统NSLayoutConstraint进行封装的第三方自动布局框架,采用链式编程的方式提供给开发者API。系统AutoLayout支持的操作,Masonry都支持,相比系统API功能来说,Masonry是有过之而无不及。

Masonry采取了链式编程的方式,代码理解起来非常清晰易懂,而且写完之后代码量看起来非常少。之前用NSLayoutConstraint写很多代码才能实现的布局,用Masonry最少一行代码就可以搞定。下面看到Masonry的代码就会发现,太简单易懂了。

Masonry是同时支持Mac和iOS两个平台的,在这两个平台上都可以使用Masonry进行自动布局。我们可以从MASUtilities.h文件中,看到下面的定义,这就是Masonry通过宏定义的方式,区分两个平台独有的一些关键字。


  
  
  1. #if TARGET_OS_IPHONE     
  2.     #import 
  3.     #define MAS_VIEW UIView 
  4.     #define MASEdgeInsets UIEdgeInsets 
  5. #elif TARGET_OS_MAC 
  6.     #import 
  7.     #define MAS_VIEW NSView 
  8.     #define MASEdgeInsets NSEdgeInsets 
  9. #endif  

Github地址:

https://github.com/SnapKit/Masonry

集成方式

Masonry支持CocoaPods,可以直接通过podfile文件进行集成,需要在CocoaPods中添加下面代码:


  
  
  1. pod 'Masonry' 

Masonry学习建议

在UI开发中,纯代码和Interface Builder我都是用过的,在开发过程中也积累了一些经验。对于初学者学习纯代码AutoLayout,我建议还是先学会Interface Builder方式的AutoLayout,领悟苹果对自动布局的规则和思想,然后再把这套思想嵌套在纯代码上。这样学习起来更好入手,也可以避免踩好多坑。

在项目中设置的AutoLayout约束,起到对视图布局的标记作用。设置好约束之后,程序运行过程中创建视图时,会根据设置好的约束计算frame,并渲染到视图上。

所以在纯代码情况下,视图设置的约束是否正确,要以运行之后显示的结果和打印的log为准。

Masonry中的坑

在使用Masonry进行约束时,有一些是需要注意的。

  1. 在使用Masonry添加约束之前,需要在addSubview之后才能使用,否则会导致崩溃。
  2. 在添加约束时初学者经常会出现一些错误,约束出现问题的原因一般就是两种:约束冲突和缺少约束。对于这两种问题,可以通过调试和log排查。
  3. 之前使用Interface Builder添加约束,如果约束有错误直接就可以看出来,并且会以红色或者黄色警告体现出来。而Masonry则不会直观的体现出来,而是以运行过程中崩溃或者打印异常log体现,所以这也是手写代码进行AutoLayout的一个缺点。

这个问题只能通过多敲代码,积攒纯代码进行AutoLayout的经验,慢慢就用起来越来越得心应手了。

Masonry基础使用

Masonry基础API


  
  
  1. mas_makeConstraints()    添加约束 
  2. mas_remakeConstraints()  移除之前的约束,重新添加新的约束 
  3. mas_updateConstraints()  更新约束 
  4.   
  5. equalTo()       参数是对象类型,一般是视图对象或者mas_width这样的坐标系对象 
  6. mas_equalTo()   和上面功能相同,参数可以传递基础数据类型对象,可以理解为比上面的API更强大 
  7.   
  8. width()         用来表示宽度,例如代表view的宽度 
  9. mas_width()     用来获取宽度的值。和上面的区别在于,一个代表某个坐标系对象,一个用来获取坐标系对象的值  

Auto Boxing

上面例如equalTo或者width这样的,有时候需要涉及到使用mas_前缀,这在开发中需要注意作区分。

如果在当前类引入#import "Masonry.h"之前,用下面两种宏定义声明一下,就不需要区分mas_前缀。


  
  
  1. // 定义这个常量,就可以不用在开发过程中使用"mas_"前缀。 
  2. #define MAS_SHORTHAND 
  3. // 定义这个常量,就可以让Masonry帮我们自动把基础数据类型的数据,自动装箱为对象类型。 
  4. #define MAS_SHORTHAND_GLOBALS  

修饰语句

Masonry为了让代码使用和阅读更容易理解,所以直接通过点语法就可以调用,还添加了and和with两个方法。这两个方法内部实际上什么都没干,只是在内部将self直接返回,功能就是为了更加方便阅读,对代码执行没有实际作用。

例如下面的例子:


  
  
  1. make.top.and.bottom.equalTo(self.containerView).with.offset(padding); 

其内部代码实现,实际上就是直接将self返回。


  
  
  1. - (MASConstraint *)with { 
  2.     return self; 
  3.  

更新约束和布局

关于更新约束布局相关的API,主要用以下四个API:


  
  
  1. - (void)updateConstraintsIfNeeded  调用此方法,如果有标记为需要重新布局的约束,则立即进行重新布局,内部会调用updateConstraints方法 
  2. - (void)updateConstraints          重写此方法,内部实现自定义布局过程 
  3. - (BOOL)needsUpdateConstraints     当前是否需要重新布局,内部会判断当前有没有被标记的约束 
  4. - (void)setNeedsUpdateConstraints  标记需要进行重新布局  

关于UIView重新布局相关的API,主要用以下三个API:


  
  
  1. - (void)setNeedsLayout  标记为需要重新布局 
  2. - (void)layoutIfNeeded  查看当前视图是否被标记需要重新布局,有则在内部调用layoutSubviews方法进行重新布局 
  3. - (void)layoutSubviews  重写当前方法,在内部完成重新布局操作  

Masonry示例代码

Masonry本质上就是对系统AutoLayout进行的封装,包括里面很多的API,都是对系统API进行了一次二次包装。


  
  
  1. Masonry本质上就是对系统AutoLayout进行的封装,包括里面很多的API,都是对系统API进行了一次二次包装。 
  2. typedef NS_OPTIONS(NSInteger, MASAttribute) { 
  3.     MASAttributeLeft = 1 << NSLayoutAttributeLeft, 
  4.     MASAttributeRight = 1 << NSLayoutAttributeRight, 
  5.     MASAttributeTop = 1 << NSLayoutAttributeTop, 
  6.     MASAttributeBottom = 1 << NSLayoutAttributeBottom, 
  7.     MASAttributeLeading = 1 << NSLayoutAttributeLeading, 
  8.     MASAttributeTrailing = 1 << NSLayoutAttributeTrailing, 
  9.     MASAttributeWidth = 1 << NSLayoutAttributeWidth, 
  10.     MASAttributeHeight = 1 << NSLayoutAttributeHeight, 
  11.     MASAttributeCenterX = 1 << NSLayoutAttributeCenterX, 
  12.     MASAttributeCenterY = 1 << NSLayoutAttributeCenterY, 
  13.     MASAttributeBaseline = 1 << NSLayoutAttributeBaseline, 
  14. };  

常用方法

设置内边距


  
  
  1. /** 
  2. 设置yellow视图和self.view等大,并且有10的内边距。 
  3. 注意根据UIView的坐标系,下面right和bottom进行了取反。所以不能写成下面这样,否则right、bottom这两个方向会出现问题。 
  4. make.edges.equalTo(self.view).with.offset(10); 
  5.   
  6. 除了下面例子中的offset()方法,还有针对不同坐标系的centerOffset()、sizeOffset()、valueOffset()之类的方法。 
  7. */ 
  8. [self.yellowView mas_makeConstraints:^(MASConstraintMaker *make) { 
  9.     make.left.equalTo(self.view).with.offset(10); 
  10.     make.top.equalTo(self.view).with.offset(10); 
  11.     make.right.equalTo(self.view).with.offset(-10); 
  12.     make.bottom.equalTo(self.view).with.offset(-10); 
  13. }];  

通过insets简化设置内边距的方式


  
  
  1. // 下面的方法和上面例子等价,区别在于使用insets()方法。 
  2. [self.blueView mas_makeConstraints:^(MASConstraintMaker *make) { 
  3.     // 下、右不需要写负号,insets方法中已经为我们做了取反的操作了。 
  4.     make.edges.equalTo(self.view).with.insets(UIEdgeInsetsMake(10, 10, 10, 10)); 
  5. }];  

更新约束


  
  
  1. // 设置greenView的center和size,这样就可以达到简单进行约束的目的 
  2. [self.greenView mas_makeConstraints:^(MASConstraintMaker *make) { 
  3.     make.center.equalTo(self.view); 
  4.     // 这里通过mas_equalTo给size设置了基础数据类型的参数,参数为CGSize的结构体 
  5.     make.size.mas_equalTo(CGSizeMake(300, 300)); 
  6. }]; 
  7.   
  8. // 为了更清楚的看出约束变化的效果,在显示两秒后更新约束。 
  9. dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.f * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{ 
  10.     [self.greenView mas_updateConstraints:^(MASConstraintMaker *make) { 
  11.         make.centerX.equalTo(self.view).offset(100); 
  12.         make.size.mas_equalTo(CGSizeMake(100, 100)); 
  13.     }]; 
  14. });  

大于等于和小于等于某个值的约束


  
  
  1. [self.textLabel mas_makeConstraints:^(MASConstraintMaker *make) { 
  2.     make.center.equalTo(self.view); 
  3.     // 设置宽度小于等于200 
  4.     make.width.lessThanOrEqualTo(@200); 
  5.     // 设置高度大于等于10 
  6.     make.height.greaterThanOrEqualTo(@(10)); 
  7. }]; 
  8.   
  9. self.textLabel.text = @"这是测试的字符串。能看到1、2、3个步骤,第一步当然是上传照片了,要上传正面近照哦。上传后,网站会自动识别你的面部,如果觉得识别的不准,你还可以手动修改一下。左边可以看到16项修改参数,最上面是整体修改,你也可以根据自己的意愿单独修改某项,将鼠标放到选项上面,右边的预览图会显示相应的位置。"

textLabel只需要设置一个属性即可


  
  
  1. self.textLabel.numberOfLines = 0; 

使用基础数据类型当做参数


  
  
  1. /** 
  2. 如果想使用基础数据类型当做参数,Masonry为我们提供了"mas_xx"格式的宏定义。 
  3. 这些宏定义会将传入的基础数据类型转换为NSNumber类型,这个过程叫做封箱(Auto Boxing)。 
  4.   
  5. "mas_xx"开头的宏定义,内部都是通过MASBoxValue()函数实现的。 
  6. 这样的宏定义主要有四个,分别是mas_equalTo()、mas_offset()和大于等于、小于等于四个。 
  7. */ 
  8. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  9.     make.center.equalTo(self.view); 
  10.     make.width.mas_equalTo(100); 
  11.     make.height.mas_equalTo(100); 
  12. }]; 

设置约束优先级


  
  
  1. /** 
  2. Masonry为我们提供了三个默认的方法,priorityLow()、priorityMedium()、priorityHigh(),这三个方法内部对应着不同的默认优先级。 
  3. 除了这三个方法,我们也可以自己设置优先级的值,可以通过priority()方法来设置。 
  4. */ 
  5. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  6.     make.center.equalTo(self.view); 
  7.     make.width.equalTo(self.view).priorityLow(); 
  8.     make.width.mas_equalTo(20).priorityHigh(); 
  9.     make.height.equalTo(self.view).priority(200); 
  10.     make.height.mas_equalTo(100).priority(1000); 
  11. }]; 
  12.  
  13. Masonry也帮我们定义好了一些默认的优先级常量,分别对应着不同的数值,优先级最大数值是1000。 
  14. static const MASLayoutPriority MASLayoutPriorityRequired = UILayoutPriorityRequired; 
  15. static const MASLayoutPriority MASLayoutPriorityDefaultHigh = UILayoutPriorityDefaultHigh; 
  16. static const MASLayoutPriority MASLayoutPriorityDefaultMedium = 500; 
  17. static const MASLayoutPriority MASLayoutPriorityDefaultLow = UILayoutPriorityDefaultLow; 
  18. static const MASLayoutPriority MASLayoutPriorityFittingSizeLevel = UILayoutPriorityFittingSizeLevel; 

设置约束比例


  
  
  1. // 设置当前约束值乘以多少,例如这个例子是redView的宽度是self.view宽度的0.2倍。 
  2. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  3.     make.center.equalTo(self.view); 
  4.     make.height.mas_equalTo(30); 
  5.     make.width.equalTo(self.view).multipliedBy(0.2); 
  6. }]; 

小练习

子视图等高练习


  
  
  1. /** 
  2. 下面的例子是通过给equalTo()方法传入一个数组,设置数组中子视图及当前make对应的视图之间等高。 
  3.   
  4. 需要注意的是,下面block中设置边距的时候,应该用insets来设置,而不是用offset。 
  5. 因为用offset设置right和bottom的边距时,这两个值应该是负数,所以如果通过offset来统一设置值会有问题。 
  6. */ 
  7. CGFloat padding = LXZViewPadding; 
  8. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  9.     make.left.right.top.equalTo(self.view).insets(UIEdgeInsetsMake(padding, padding, 0, padding)); 
  10.     make.bottom.equalTo(self.blueView.mas_top).offset(-padding); 
  11. }]; 
  12.   
  13. [self.blueView mas_makeConstraints:^(MASConstraintMaker *make) { 
  14.     make.left.right.equalTo(self.view).insets(UIEdgeInsetsMake(0, padding, 0, padding)); 
  15.     make.bottom.equalTo(self.yellowView.mas_top).offset(-padding); 
  16. }]; 
  17.   
  18. /** 
  19. 下面设置make.height的数组是关键,通过这个数组可以设置这三个视图高度相等。其他例如宽度之类的,也是类似的方式。 
  20. */ 
  21. [self.yellowView mas_makeConstraints:^(MASConstraintMaker *make) { 
  22.     make.left.right.bottom.equalTo(self.view).insets(UIEdgeInsetsMake(0, padding, padding, padding)); 
  23.     make.height.equalTo(@[self.blueView, self.redView]); 
  24. }]; 

子视图垂直居中练习


  
  
  1. /** 
  2. 要求:(这个例子是在其他人博客里看到的,然后按照要求自己写了下面这段代码) 
  3. 两个视图相对于父视图垂直居中,并且两个视图以及父视图之间的边距均为10,高度为150,两个视图宽度相等。 
  4. */ 
  5. CGFloat padding = 10.f; 
  6. [self.blueView mas_makeConstraints:^(MASConstraintMaker *make) { 
  7.     make.centerY.equalTo(self.view); 
  8.     make.left.equalTo(self.view).mas_offset(padding); 
  9.     make.right.equalTo(self.redView.mas_left).mas_offset(-padding); 
  10.     make.width.equalTo(self.redView); 
  11.     make.height.mas_equalTo(150); 
  12. }]; 
  13.   
  14. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  15.     make.centerY.equalTo(self.view); 
  16.     make.right.equalTo(self.view).mas_offset(-padding); 
  17.     make.width.equalTo(self.blueView); 
  18.     make.height.mas_equalTo(150); 
  19. }]; 

UITableView动态Cell高度

在iOS UI开发过程中,UITableView的动态Cell高度一直都是个问题。实现这样的需求,实现方式有很多种,只是实现起来复杂程度和性能的区别。

在不考虑性能的情况下,tableView动态Cell高度,可以采取估算高度的方式。如果通过估算高度的方式实现的话,无论是纯代码还是Interface Builder,都只需要两行代码就可以完成Cell自动高度适配。

实现方式:

需要设置tableView的rowHeight属性,这里设置为自动高度,告诉系统Cell的高度是不固定的,需要系统帮我们进行计算。然后设置tableView的estimatedRowHeight属性,设置一个估计的高度。(我这里用的代理方法,实际上都一样)

原理:

这样的话,在tableView被创建之后,系统会根据estimatedRowHeight属性设置的值,为tableView设置一个估计的值。然后在Cell显示的时候再获取Cell的高度,并刷新tableView的contentSize。


  
  
  1. - (void)tableViewConstraints { 
  2.     [self.tableView mas_makeConstraints:^(MASConstraintMaker *make) { 
  3.         make.edges.equalTo(self.view); 
  4.     }]; 
  5.   
  6. - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { 
  7.     return self.dataList.count
  8.   
  9. - (MasonryTableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { 
  10.     MasonryTableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:LXZTableViewCellIdentifier]; 
  11.     [cell reloadViewWithText:self.dataList[indexPath.row]]; 
  12.     return cell; 
  13.   
  14. // 需要注意的是,这个代理方法和直接返回当前Cell高度的代理方法并不一样。 
  15. // 这个代理方法会将当前所有Cell的高度都预估出来,而不是只计算显示的Cell,所以这种方式对性能消耗还是很大的。 
  16. // 所以通过设置estimatedRowHeight属性的方式,和这种代理方法的方式,最后性能消耗都是一样的。 
  17. - (CGFloat)tableView:(UITableView *)tableView estimatedHeightForRowAtIndexPath:(NSIndexPath *)indexPath { 
  18.     return 50.f; 
  19.   
  20. - (UITableView *)tableView { 
  21.     if (!_tableView) { 
  22.         _tableView = [[UITableView alloc] initWithFrame:CGRectZero style:UITableViewStylePlain]; 
  23.         _tableView.delegate = self; 
  24.         _tableView.dataSource = self; 
  25.         // 设置tableView自动高度 
  26.         _tableView.rowHeight = UITableViewAutomaticDimension; 
  27.         [_tableView registerClass:[MasonryTableViewCell class] forCellReuseIdentifier:LXZTableViewCellIdentifier]; 
  28.         [self.view addSubview:_tableView]; 
  29.     } 
  30.     return _tableView; 

UIScrollView自动布局

之前听很多人说过UIScrollView很麻烦,然而我并没有感觉到有多麻烦(并非装逼)。我感觉说麻烦的人可能根本就没试过吧,只是觉得很麻烦而已。

我这里就讲一下两种进行UIScrollView自动布局的方案,并且会讲一下自动布局的技巧,只要掌握技巧,布局其实很简单。

布局小技巧:

给UIScrollView添加的约束是定义其frame,设置contentSize是定义其内部大小。UIScrollView进行addSubview操作,都是将其子视图添加到contentView上。

所以,添加到UIScrollView上的子视图,对UIScrollView添加的约束都是作用于contentView上的。只需要按照这样的思路给UIScrollView设置约束,就可以掌握设置约束的技巧了。

提前设置contentSize


  
  
  1. // 提前设置好UIScrollView的contentSize,并设置UIScrollView自身的约束 
  2. self.scrollView.contentSize = CGSizeMake(1000, 1000); 
  3. [self.scrollView mas_makeConstraints:^(MASConstraintMaker *make) { 
  4.     make.edges.equalTo(self.view); 
  5. }]; 
  6.   
  7. // 虽然redView的get方法内部已经执行过addSubview操作,但是UIView始终以最后一次添加的父视图为准,也就是redView始终是在最后一次添加的父视图上。 
  8. [self.scrollView addSubview:self.redView]; 
  9. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  10.     make.left.top.equalTo(self.scrollView); 
  11.     make.width.height.mas_equalTo(200); 
  12. }]; 
  13.   
  14. [self.scrollView addSubview:self.blueView]; 
  15. [self.blueView mas_makeConstraints:^(MASConstraintMaker *make) { 
  16.     make.left.equalTo(self.redView.mas_right); 
  17.     make.top.equalTo(self.scrollView); 
  18.     make.width.height.equalTo(self.redView); 
  19. }]; 
  20.   
  21. [self.scrollView addSubview:self.greenView]; 
  22. [self.greenView mas_makeConstraints:^(MASConstraintMaker *make) { 
  23.     make.left.equalTo(self.scrollView); 
  24.     make.top.equalTo(self.redView.mas_bottom); 
  25.     make.width.height.equalTo(self.redView); 
  26. }]; 

自动contentSize

上面的例子是提前设置好UIScrollView的contentSize的内部size,然后直接向里面addSubview。但是这有个要求就是,需要提前知道contentSize的大小,不然没法设置。

这个例子中将会展示动态改变contentSize的大小,内部视图有多少contentSize就自动扩充到多大。

这种方式的实现,主要是依赖于创建一个containerView内容视图,并添加到UIScrollView上作为子视图。UIScrollView原来的子视图都添加到containerView上,并且和这个视图设置约束。

因为对UIScrollView进行addSubview操作的时候,本质上是往其contentView上添加。也就是containerView的父视图是contentView,通过containerView撑起contentView视图的大小,以此来实现动态改变contentSize。


  
  
  1. // 在进行约束的时候,要对containerView的上下左右都添加和子视图的约束,以便确认containerView的边界区域。 
  2. [self.scrollView mas_makeConstraints:^(MASConstraintMaker *make) { 
  3.     make.edges.equalTo(self.view); 
  4. }]; 
  5.   
  6. CGFloat padding = LXZViewPadding; 
  7. [self.containerView mas_makeConstraints:^(MASConstraintMaker *make) { 
  8.     make.edges.equalTo(self.scrollView).insets(UIEdgeInsetsMake(padding, padding, padding, padding)); 
  9. }]; 
  10.   
  11. [self.containerView addSubview:self.greenView]; 
  12. [self.greenView mas_makeConstraints:^(MASConstraintMaker *make) { 
  13.     make.top.left.equalTo(self.containerView).offset(padding); 
  14.     make.size.mas_equalTo(CGSizeMake(250, 250)); 
  15. }]; 
  16.   
  17. [self.containerView addSubview:self.redView]; 
  18. [self.redView mas_makeConstraints:^(MASConstraintMaker *make) { 
  19.     make.top.equalTo(self.containerView).offset(padding); 
  20.     make.left.equalTo(self.greenView.mas_right).offset(padding); 
  21.     make.size.equalTo(self.greenView); 
  22.     make.right.equalTo(self.containerView).offset(-padding); 
  23. }]; 
  24.   
  25. [self.containerView addSubview:self.yellowView]; 
  26. [self.yellowView mas_makeConstraints:^(MASConstraintMaker *make) { 
  27.     make.left.equalTo(self.containerView).offset(padding); 
  28.     make.top.equalTo(self.greenView.mas_bottom).offset(padding); 
  29.     make.size.equalTo(self.greenView); 
  30.     make.bottom.equalTo(self.containerView).offset(-padding); 
  31. }];  





本文作者:佚名
来源:51CTO
目录
相关文章
|
15天前
|
搜索推荐 数据管理 定位技术
iOS应用开发中有多种主流框架
iOS应用开发中有多种主流框架
136 60
|
4月前
|
物联网 区块链 vr&ar
未来已来:探索区块链、物联网与虚拟现实技术的融合与应用安卓与iOS开发中的跨平台框架选择
【8月更文挑战第30天】在科技的巨轮下,新技术不断涌现,引领着社会进步。本文将聚焦于当前最前沿的技术——区块链、物联网和虚拟现实,探讨它们各自的发展趋势及其在未来可能的应用场景。我们将从这些技术的基本定义出发,逐步深入到它们的相互作用和集成应用,最后展望它们如何共同塑造一个全新的数字生态系统。
|
5月前
|
开发框架 前端开发 Android开发
安卓与iOS开发中的跨平台框架解析
在移动应用开发的广阔舞台上,安卓和iOS一直是两大主角。随着技术的进步,开发者们渴望能有一种方式,让他们的应用能同时在这两大平台上运行,而不必为每一个平台单独编写代码。这就是跨平台框架诞生的背景。本文将探讨几种流行的跨平台框架,包括它们的优势、局限性,以及如何根据项目需求选择合适的框架。我们将从技术的深度和广度两个维度,对这些框架进行比较分析,旨在为开发者提供一个清晰的指南,帮助他们在安卓和iOS的开发旅程中,做出明智的选择。
|
5月前
|
开发工具 Swift iOS开发
探索iOS开发中的SwiftUI框架
在数字时代的浪潮中,iOS应用开发的舞台日益扩展,其中SwiftUI作为苹果推出的新型用户界面框架,正逐渐改变着开发者构建应用的方式。本文将深入介绍SwiftUI的核心概念和实际应用,探讨其如何简化代码、提升效率并推动设计创新,同时也会触及SwiftUI在当前技术生态中所面临的挑战与未来的发展潜力。
|
5月前
|
机器学习/深度学习 API iOS开发
探索iOS开发中的SwiftUI框架深入理解RESTful API设计原则与最佳实践
【7月更文挑战第30天】本文深入探讨了SwiftUI框架在iOS开发中的应用,分析了其对用户界面构建的简化方法及性能优化。通过比较传统UI构建方式与SwiftUI的差异,揭示了SwiftUI如何提高开发效率和用户体验。文章还讨论了SwiftUI在实际项目中的集成策略,并展望了其未来的发展方向。 【7月更文挑战第30天】在数字时代的浪潮中,RESTful API如同一座桥梁,连接着不同的软件系统。本文将探讨RESTful API的核心设计原则,揭示其背后的哲学思想,并通过实例分析展示如何将这些原则应用于实际开发中。我们将从资源定位、接口一致性到HTTP方法的恰当使用,逐一剖析,旨在为开发者提供
66 1
|
15天前
|
iOS开发 开发者
探索iOS开发中的SwiftUI框架
【10月更文挑战第39天】在苹果的生态系统中,SwiftUI框架以其声明式语法和易用性成为开发者的新宠。本文将深入SwiftUI的核心概念,通过实际案例展示如何利用这一框架快速构建用户界面,并探讨其对iOS应用开发流程的影响。
|
2月前
|
移动开发 网络协议 小程序
基于开源IM即时通讯框架MobileIMSDK:RainbowChat-iOS端v9.1版已发布
RainbowChat是一套基于开源IM聊天框架 MobileIMSDK 的产品级移动端IM系统。RainbowChat源于真实运营的产品,解决了大量的屏幕适配、细节优化、机器兼容问题
59 5
|
2月前
|
Swift iOS开发 开发者
探索iOS开发中的SwiftUI框架
【10月更文挑战第21天】在苹果生态系统中,SwiftUI的引入无疑为iOS应用开发带来了革命性的变化。本文将通过深入浅出的方式,带领读者了解SwiftUI的基本概念、核心优势以及如何在实际项目中运用这一框架。我们将从一个简单的例子开始,逐步深入到更复杂的应用场景,让初学者能够快速上手,同时也为有经验的开发者提供一些深度使用的技巧和策略。
49 1
|
4月前
|
机器学习/深度学习 搜索推荐 数据处理
探索iOS应用开发的新趋势:SwiftUI和Combine框架
【8月更文挑战第6天】随着Apple不断推动其操作系统的进化,iOS开发领域也迎来了新的变革。本文将深入探讨SwiftUI和Combine框架如何革新iOS应用开发流程,提升开发者的工作效率,并改善最终用户的体验。我们将从这两个框架的基本概念出发,分析它们的核心优势,并预测它们将如何塑造iOS开发的未来。
|
3月前
|
iOS开发 开发者 UED
探索iOS应用开发中的SwiftUI框架
【9月更文挑战第26天】 在iOS开发的海洋中,SwiftUI犹如一艘现代的快艇,引领着开发者们驶向更加高效与直观的编程体验。本文将带你领略SwiftUI的魅力,从其设计理念到实际应用,我们将一步步揭开它如何简化界面构建过程的面纱。通过对比传统方式,你将看到SwiftUI如何让代码变得像诗一样优美,同时保持强大的功能性和灵活性。准备好让你的iOS开发技能加速升级,一起驾驭这股新潮流吧!