Agentic RAG:用LangGraph打造会自动修正检索错误的 RAG 系统

简介: 本文介绍基于 LangGraph 与 Redis 构建生产级 Agentic RAG 系统,通过引入智能体机制实现检索结果的自动评估与查询重写,解决传统 RAG 回答偏离问题。系统具备自校正、决策透明与模块化优势,显著提升复杂场景下的问答准确率。

标准 RAG 流水线有个根本性的毛病:检索到的文档一旦与用户意图对不上号,模型照样能面不改色地输出一堆看似合理的胡话,既没有反馈机制也谈不上什么纠错能力。

而Agentic RAG 的思路截然不同,它不急着从检索结果里硬挤答案,而是先判断一下拿回来的东西到底有没有用,如果没用则会重写查询再来一轮。这套机制实际上构建了一条具备自我修复能力的检索链路,面对边界情况也不至于直接崩掉。

本文要做的就是用 LangGraph 做流程编排、Redis 做向量存储,搭一个生产可用的 Agentic RAG 系统。涉及整体架构设计、决策逻辑实现,以及状态机的具体接线方式。

传统 RAG 的"一锤子买卖"

假设知识库里有一篇《大语言模型的参数高效训练方法》,用户问的是"怎么微调 LLM 效果最好"。

语义相似度确实存在但不够强。检索器拉回来的可能是模型架构相关的内容虽然沾边但答非所问,LLM 本身没法意识到上下文是错的,照样能生成一段貌似专业实则离题万里的回答。

传统 RAG 对这种失败模式完全没有办法。查询文档、生成答案,整个过程是单向的没有任何质量把关环节。

Agentic RAG 的解法是在流程中插入检查点:智能体先判断要不要检索;检索完了有评分环节确认相关性;不相关就重写查询再试;如此循环直到拿到合格的上下文,或者把重试次数耗尽为止。

系统架构拆解

整个系统拆成六个模块:

配置层负责环境变量和 API 客户端的初始化工作。Redis 连接串、OpenAI 密钥、模型名称全部归拢到这里统一管理。

检索器模块承担文档摄取的全套流程,文档经过

WebBaseLoader

加载后用

RecursiveCharacterTextSplitter

切块,再通过 OpenAI Embedding 向量化,最后存进

RedisVectorStore

。检索器本身会被包装成 LangChain 工具供智能体调用。

智能体节点是决策入口。拿到用户问题后先做判断:这个问题需要查资料还是直接能答?需要查就调检索器,不需要就直出答案。

评分(Grade Edge)决定检索结果的去向。相关性够就往生成环节走;不够就触发重写。这是整个系统里最关键的质量关卡。

重写节点把原始问题改写成更适合检索的形式,用户表述太口语化、缺少关键词,这些问题都在这里修正。

生成节点只有在评分环节确认上下文合格后才会执行,基于检索到的文档产出最终答案。

流程图和代码

关键在于从"重写"回到"智能体"这条反馈路径。系统不会因为一次检索失败就直接给出一个牵强附会的答案,它会调整策略重新尝试。

 src/  
├── config/  
│   ├── settings.py      # 环境变量  
│   └── openai.py        # 模型名称和 API 客户端  
├── retriever.py         # 文档摄取和 Redis 向量存储  
├── agents/  
│   ├── nodes.py         # 智能体、重写和生成函数  
│   ├── edges.py         # 文档评分逻辑  
│   └── graph.py         # LangGraph 状态机  
 └── main.py              # 入口点

职责划分很清晰:配置归

config/

,智能体相关的都在

agents/

,向量存储操作全在

retriever.py

。这种结构调试起来方便,单测也好写。

配置模块设计

配置层解决两个问题:环境变量加载和 API 客户端复用。

settings.py

集中读取 Redis 连接信息、OpenAI API Key、索引名称,不用满项目找配置。

openai.py

负责实例化 Embedding 模型和 LLM 客户端。切换到别的模型、调整 Embedding 维度等等配置也只要一处

这个设计在生产环境里很实用,因为模型会迭代、Key 会轮换、服务商可能换掉,集中管理意味着改动成本可控。

检索器实现

检索器负责整条数据摄取链路:抓文档、切块、向量化、入库。

语料选的是 Lilian Weng 关于 Agent 和 Prompt Engineering 的博客文章。

WebBaseLoader

负责抓取,

RecursiveCharacterTextSplitter

切分成适当大小的块,OpenAI Embedding 完成向量化。

向量存储用

RedisVectorStore

。检索器通过

create_retriever_tool

封装成 LangChain 工具形态。这一步的意义在于让智能体能够"调用"检索而不是被动触发,意味着它有权决定什么时候需要查资料、什么时候直接回答。

为什么用Redis?因为够快,够简单。向量相似度搜索本身 Redis 就能做,不用额外引入专门的向量数据库。对于已经跑着 Redis 的技术栈来说,加 RAG 能力几乎零额外运维负担。

智能体节点

nodes.py

里有三个核心函数。

智能体函数接收当前状态(用户问题、历史对话等),判断下一步怎么走。它能调用包括检索器在内的工具集。问题需要外部知识就调检索,不需要就直接生成回答。

重写函数处理那些被评分环节打回来的查询。它会让 LLM 把原始问题改写成检索友好的形式,用词更精准、关键信息更突出。改写后的查询再交回智能体重新发起检索。

生成函数产出最终答案。输入是原始问题加上已确认相关的文档,输出是基于这些上下文的回答。

三个函数都是无状态的。状态走图,不走函数内部变量。这对测试和排查问题都有好处。

文档评分逻辑

edges.py

里的

grade_documents

是整个 Agentic 机制的核心。

检索完成后它会逐个审视返回的文档:这东西跟用户问的相关不相关?能不能帮上忙?

评分本身是通过一次 LLM 调用完成的,Prompt 设计成要求模型返回二元判断——相关或者不相关。

判定相关就返回

"generate"

,流程走向答案生成;判定不相关则返回

"rewrite"

,触发查询改写。

这个环节的价值在于拦截那些本会导致标准 RAG 胡说八道的情况,与其硬着头皮从不靠谱的上下文里编答案,不如给系统一次修正查询的机会。

状态机接线

graph.py

用 LangGraph 的状态机原语把所有节点串起来。

图结构定义了节点(智能体、检索、生成、重写)和边(节点间的连接关系,包括基于评分结果的条件路由)。

接线逻辑如下:查询先到智能体节点,智能体决定调检索器的话流程就到检索节点,检索完进评分,评分过了走生成,没过走重写,重写完的查询再回智能体重新来过。生成节点执行完流程结束。

LangGraph 接管状态流转的细节。每个节点只管接收当前状态、返回状态更新,具体消息怎么路由由图引擎根据边的条件逻辑处理。

运行时流程

main.py

是入口,做三件事:构建图、接收问题、流式输出结果。

build_graph()

在启动时执行一次,完成 LangGraph 状态机的构建和检索器工具的初始化.

问题进来之后的流转过程:智能体接收问题决定调检索 → Redis 返回文档 → 评分环节判断相关性 → 相关就生成答案,不相关就重写查询继续循环。

脚本会把各节点的输出实时打到控制台,方便观察决策过程——什么时候触发了检索、评分结果如何、有没有走到重写环节,一目了然。

架构的优势

自校正能力:检索质量差能发现并修复,不会闷头输出一个基于垃圾上下文的错误答案然后假装没事发生。

决策透明:状态机让每个分支点都是显式的。路由决策可以全量记录,想排查为什么系统选择了重写而不是直接生成,日志里全有。

模块解耦:每个组件职责单一。想把 Redis 换成 Pinecone?改检索模块。想把 OpenAI 换成 Anthropic?改配置层。其他部分不受影响。

总结

标准 RAG 把检索当黑盒,查询丢进去、文档出来,至于相不相关全凭运气。Agentic RAG 打开这个黑盒在关键位置加了质量控制。

LangGraph 加 Redis 的组合提供了一个可以直接上生产的骨架。流程编排的复杂度 LangGraph 消化掉了,向量检索的性能 Redis 兜住了,剩下的评分和重写逻辑负责兜底那些简单系统搞不定的边角案例。

代码:

https://avoid.overfit.cn/post/a45e19af576a4826a605807d8fcfe298

作者:Kushal Banda

目录
相关文章
|
1月前
|
人工智能 自然语言处理 算法
2025 全球GEO优化行业年度观察:AI商业化元年,国产服务商异军突起
2025年,生成式引擎优化(GEO)从技术小众迈向企业营销标配,市场规模达480亿元,跨境增速超90%。AI搜索普及推动流量逻辑变革,即搜AI、边鱼科技引领技术突破与普惠落地,合规化、垂直化成未来趋势,GEO正重塑企业数字营销新格局。
|
2月前
|
机器学习/深度学习 传感器 算法
BipedalWalker实战:SAC算法如何让机器人学会稳定行走
本文探讨基于Soft Actor-Critic(SAC)算法的下肢假肢自适应控制。传统方法依赖精确建模,难以应对复杂环境变化。SAC通过最大熵强化学习,使假肢在仿真中自主探索、学习稳定步态,具备抗干扰与容错能力。结合生物工程视角,将神经网络映射为神经系统,奖励函数关联代谢效率,实现从试错到自然行走的演化。相位图分析显示极限环形成,标志动态稳定步态建立,能效曲线表明后期动作更节能。研究为智能假肢迈向临床应用提供新思路。
269 117
BipedalWalker实战:SAC算法如何让机器人学会稳定行走
|
13天前
|
存储 SQL Apache
Flink + Fluss 实战: Delta Join 原理解析与操作指南
Flink Delta Join 通过复用源表数据替代本地状态,解决双流 Join 状态膨胀问题。结合 Fluss 流存储,实现高效双向 Lookup,显著降低资源消耗与 Checkpoint 时间,提升作业稳定性与恢复速度,已在阿里大规模落地。
184 25
Flink + Fluss 实战: Delta Join 原理解析与操作指南
|
5天前
|
机器学习/深度学习 自然语言处理 算法
从贝叶斯视角解读Transformer的内部几何:mHC的流形约束与大模型训练稳定性
大模型训练常因架构改动破坏内部贝叶斯几何结构,导致不稳定。研究表明,Transformer通过残差流、注意力与值表征在低维流形上实现类贝叶斯推理。mHC通过约束超连接保护这一几何结构,确保规模化下的训练稳定与推理一致性。
157 7
从贝叶斯视角解读Transformer的内部几何:mHC的流形约束与大模型训练稳定性
|
1月前
|
自然语言处理 算法 索引
LlamaIndex检索调优实战:七个能落地的技术细节
RAG系统上线后常遇答案质量不稳,问题多出在检索细节。本文总结LlamaIndex中7个实测有效的优化技巧:语义分块+句子窗口、BM25与向量混合检索、多查询扩展、reranker精排、元数据过滤与去重、响应合成模式选择及持续评估。每招均附可运行代码,助你提升RAG效果。
254 111
|
13天前
|
SQL 存储 关系型数据库
从一条慢SQL说起:交易订单表如何做索引优化
本文首先以淘天电商交易订单表线上一条非典型慢 SQL 的深入剖析为切入点,示范如何系统地分析与排查慢 SQL;接着详尽归纳了索引分类、B+Tree 与 B‑Tree 的结构差异、B+Tree 高度估算方法、EXPLAIN 与 Query Profile 等诊断工具的使用,以及索引下推与排序的执行流程等索引优化理论;最后结合日常实践经验,提出了适用于大规模线上集群的索引变更 SOP,并总结了常见的慢 SQL 成因与相应的解决策略。
194 36
从一条慢SQL说起:交易订单表如何做索引优化
|
7天前
|
人工智能 自然语言处理 安全
Lux 上手指南:让 AI 直接操作你的电脑
Lux 是一款能直接操作计算机的AI基础模型,通过视觉理解与动作预测,实现自然语言指令下的自动化任务。它无需依赖API,可像真人一样点击、输入、滚动,完成浏览器操作等复杂工作,准确率超越主流模型,是迈向“意图即执行”的重要突破。(238字)
104 13
Lux 上手指南:让 AI 直接操作你的电脑

热门文章

最新文章