15_完全二叉树的节点个数

简介: 15_完全二叉树的节点个数

完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树

法一:递归法

1、确定递归函数的参数返回值:参数就是传入树的根节点返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。

int getNodesNum(TreeNode root)

2、确定终止条件:如果为空节点的话,就返回0,表示节点数为0。

if (cur == null)  return 0;

3、确定单层递归的逻辑:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一(加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

int leftNum = getNodesNum(cur.left);    //左
int rightNum = getNodesNum(cur.right);  //右
int treeNum = leftNum + rightNum + 1;   //中

时间复杂度:O(n)

空间复杂度:O(logn),算上了递归系统栈占用的空间

class Solution {
  //通用递归解法
  public int countNodes(TreeNode root) {
    if (root == null) {
      return 0;
    }
    return 1 + countNode(root.left) + countNode(root.right);
  }
}

法二:迭代法

class Solution {
    public int countNodes(TreeNode root) {
        if (root == null)  return 0;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        int count = 1;
        while (!queue.isEmpty()) {
            int levelSize = queue.size();
            while (levelSize-- > 0) {
                TreeNode temp = queue.poll();
                if (temp.left != null) {
                    queue.add(temp.left);
                    count++;
                }
                if (temp.right != null) {
                    queue.add(temp.right);
                    count++;
                }
            }
        }
        return count;
    }
}

法三:完全二叉树的特性

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。

class Solution {
  /
        针对完全二叉树的解法,满二叉树的节点数为:2^depth - 1
    */
    public int countNodes(TreeNode root) {
        if (root == null)  return 0;
        TreeNode left = root.left;
        TreeNode right = root.right;
        int leftDepth = 0, rightDepth = 0;//这里初始化为0是有目的的,为了下面求指数方便
        while (left != null) {  //求左子树的深度
            left = left.left;
            leftDepth++;
        }
        while (right != null) {
            right = right.right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1;  // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root.left) + countNodes(root.right) + 1;
    }
}
相关文章
|
7月前
|
Java C++ Python
leetcode-222:完全二叉树的节点个数
leetcode-222:完全二叉树的节点个数
34 0
|
7月前
|
存储
二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)
二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)
|
6月前
【树 - 平衡二叉树(AVL)】F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量
【树 - 平衡二叉树(AVL)】F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量
|
算法 DataX C语言
【数据结构】二叉树的节点数,叶子数,第K层节点数,高度,查找x节点,判断是否为完全二叉树等方法【下】
六、二叉树叶子节点个数 1.代码: 2.测试结果: 七、二叉树第k层节点个数 1.代码: 2.测试结果: 八、二叉树查找值为x的节点 1.代码: 2.测试结果: 九、判断二叉树是否是完全二叉树 1.代码: 2.测试结果: 十、补充:队列代码 Queue.h Queue.c
|
算法 C语言
【数据结构】二叉树的节点数,叶子数,第K层节点数,高度,查找x节点,判断是否为完全二叉树等方法【上】
文章目录 一、二叉数的结构体 二、构建二叉树,供后续测试使用 三、二叉树销毁 四、构建节点 五、二叉树的高度: 1.代码: 2.测试结果: 二叉树节点个数 1.代码: 2.测试结果:
计算左子树规模(结点个数),找出树的根结点
简单的计算公式教你找出左子树到底有多少个娃,也会与你一起寻找根结点,快来看看呀
计算左子树规模(结点个数),找出树的根结点
|
7月前
|
存储 算法
算法题解-完全二叉树的节点个数
算法题解-完全二叉树的节点个数
|
算法
【数据结构与算法】二叉树的深度,节点数,第k层的节点数,遍历,二叉树叶节点的个数
【数据结构与算法】二叉树的深度,节点数,第k层的节点数,遍历,二叉树叶节点的个数
293 0
|
算法
力扣222.完全二叉树的节点个数
力扣222.完全二叉树的节点个数
66 0
leetcode 222 完全二叉树的节点个数
leetcode 222 完全二叉树的节点个数
62 0
leetcode 222 完全二叉树的节点个数