线程xiancheng

简介: 线程xiancheng
# 进程只是资源单位
# 进程内部的代码才是线程
# 区别:
# 1.不同进程之间数据是不共享的
# 1.同一进程下不同线程之间的数据是共享的
# 2.进程开销远大于线程
# 3.pid

# from threading import Thread
# import time
#
# def task(name):
#     time.sleep(2)
#     print("%s is running"%(name))
#
# if __name__ == "__main__":
#     t1 = Thread(target=task,args=("线程一",))
#     t1.start()
#     t1.join()
#     print("主线程")


# 线程的属性
# from threading import Thread
# import os
# from multiprocessing import current_process  #跟os.getpid()一样
# from threading import currentThread,active_count
# class MyThread(Thread):
#     def __init__(self,name):
#         super().__init__()
#         self.name = name
#
#     def run(self):
#         print("%s is running"%(self.name),current_process().pid)
#
# if __name__ == "__main__":
#     t1 = MyThread("线程一")
#     t1.start()
#     t1.setName("儿子线程一") #设置线程名字
#     t1.is_alive()
#     t1.join()
#     t2 = MyThread("线程二")
#     t2.start()
#     currentThread().setName("baba线程") # 主函数内线程改名字
#
#     print("主线程",os.getpid())
#     print(currentThread().getName())  # 主函数内线程获取名字
#     print(active_count())  # 获取活跃的线程数量



#守护线程
# 守护线程,会跟着主线程一起死,主线程会等着非守护线程死
# 非守护线程结束,主线程结束,守护线程立刻死亡
# from threading import Thread,currentThread
# import time,os
#
# def task(name):
#     print("%s is running"%name)
#     time.sleep(3)
#     print("%s is done"%name)
#
# if __name__ == "__main__":
#     t1 = Thread(target=task,args=("子线程一",))
#     t1.start()
#     t2 = Thread(target=task,args=("守护线程",))
#     time.sleep(3)
#     # t2.daemon = True  # 这样方法一开启线程
#     t2.setDaemon(True)  # 方法二开启守护线程
#     t2.start()
#     currentThread().setName("我是线程老大")
#     print("%s is running"%(currentThread().getName()))
#


# 互斥锁
# from threading import Thread,Lock
# import time
#
# n = 100
# def task(mutex):
#
#     global n
#     mutex.acquire() # 加锁
#     temp = n
#     time.sleep(0.1)
#     n = temp -1
#     mutex.release()  # 释放锁
# if __name__ == "__main__":
#     t_list = []
#     mutex = Lock()
#     for i in range(100):
#         t = Thread(target=task,args=(mutex,))
#         t.start()
#         t_list.append(t)
#     for i in t_list:
#         i.join()
#     print(n)




# GIL全局解释器锁:特殊的互斥锁
# python执行原理
# 第一步:开启进程以后
# 第二步:将python解释器加载到内存,将代码加载到内存
# 第三步:有多个线程,和垃圾回收线程
# 线程想执行,都是把代码传到解释器里去执行
# 为了解决多个线程与垃圾回收线程共享数据 的问题,所以要给解释器上锁。
# GIL主要是解决多线程下共享数据问题
# GIL不限制多进程
# 垃圾回收线程过一段时间自己开启,自己关闭
# 区别:
# GIL解决垃圾回收的数据
# 自己写的互斥锁,解决的是代码中共享的数据

# ?感觉多线程用不到多核啊,实现不了并行啊
# 并发:看起来像一起运行
# 并行:多核 --对多进程有利
#
# 多核:对多进程有用
# 单核:多进程根本用不到,所以要开多线程
#
# 假设:任务是计算密集型:计算  那么开多进程  如:金融计算,数据处理,人工智能
#      任务是IO密集型:sleep()和文件交互 那么我开多线程  如socket,爬虫,web


# 死锁:你要知道走的流程就好理解了
# 按照小品说的:林:你给我出示证件,我就帮你打开箱子。 黄:你要不给我打开箱子,我就没法给你出示证件。 林:你要不给我出示证件,我就没法给你打开箱子。 黄:你先给我打开箱子,我后给你出示证件嘛! 林:你先给我出示证件,我后给你打开箱子嘛!
# from threading import Thread,Lock
# import time
# mutexA = Lock()
# mutexB = Lock()
#
# class MyThread(Thread):
#     def run(self):
#         self.fun1()
#         self.fun2()
#     def fun1(self):
#         mutexA.acquire()
#         print("%s拿到了A锁"%(self.name))
#         mutexB.acquire()
#         print("%s拿到了B锁" % (self.name))
#         mutexB.release()
#         mutexA.release()
#     def fun2(self):
#         mutexB.acquire()
#         print("%s拿到了B锁"%(self.name))
#         time.sleep(1)
#         mutexA.acquire()
#         print("%s拿到了A锁" % (self.name))
#         mutexA.release()
#         mutexB.release()
#
# if __name__ == "__main__":
#     for i in range(10):
#         t = MyThread()
#         t.start()
# """
# Thread-1拿到了A锁
# Thread-1拿到了B锁
# Thread-1拿到了B锁
# Thread-2拿到了A锁
# """
#



# 递归锁:解决死锁,RLock()
# 递归锁原理:可以连续acquire,他会计数
# 只有计数为0的时候才能被别的线程抢到
# from threading import Thread,RLock
# import time
#
# mutexB=mutexA=RLock()
#
# class MyThread(Thread):
#     def run(self):
#         self.fun1()
#         self.fun2()
#     def fun1(self):
#         mutexA.acquire()
#         print("%s拿到A锁"%(self.name))
#         mutexB.acquire()
#         print("%s拿到B锁" % (self.name))
#         mutexB.release()
#         mutexA.release()
#     def fun2(self):
#         time.sleep(3)
#         mutexB.acquire()
#         print("%s拿到B锁"%(self.name))
#         time.sleep(1)
#         mutexA.acquire()
#         print("%s拿到A锁" % (self.name))
#         mutexA.release()
#         mutexB.release()
#
# if __name__ == "__main__":
#     for i in range(5):
#         t = MyThread()
#         t.start()


# 信号量:比如:一个厕所5个坑,5个坑被占了,其他人就得等,这会就得上锁
# from threading import Thread,Semaphore,currentThread
# import time,random
# sm = Semaphore(5)
#
# def task():
#     with sm:
#         print("%s正在上厕所"%(currentThread().getName()))
#         tm = random.randint(1,6)
#         time.sleep(tm)
#         print("%s用时%s秒"%(currentThread().getName(),tm))
#
# if __name__ == "__main__":
#     for i in range(10):
#         t = Thread(target=task)
#         t.start()



# Event事件:
# from threading import Thread,Event,currentThread
# import time
#
# event = Event()
#
# def student():
#     print("学生%s正在上课"%(currentThread().getName()))
#     event.wait(3)  # 我等三秒,我就走
#     print("学生%s课间活动" % (currentThread().getName()))
#
# def teacher():
#     print("老师%s正在上课"%(currentThread().getName()))
#     time.sleep(7)
#     event.set()
#     print(event.isSet())  # 判断set是否被设置
#     print(event.is_set())
#     event.clear()  #将他返回原来的状态
#     print(event.is_set())
#
# if __name__ == "__main__":
#     s1 = Thread(target=student)
#     s2 = Thread(target=student)
#     s3 = Thread(target=student)
#     t1 = Thread(target=teacher)
#
#     s1.start()
#     s2.start()
#     s3.start()
#     t1.start()



# 定时器:
# 例子一:简单实用
# from threading import Timer
#
# def task(name):
#     print("%s is running"%(name))
#
# t = Timer(5,task,args=(" 3ξ",))
# t.start()

# 定时器
# 例子二:写验证码
# from threading import Timer,Thread
# import string,random
#
# class Code:
#     #初始化
#     def __init__(self):
#         self.make_cache()
#
#     #循环调用定时器
#     def make_cache(self,interval=5):
#         self.code = self.make_code()
#         self.t = Timer(interval,self.make_cache)
#         self.t.start()
#
#     #创建默认4位的验证码
#     def make_code(self,n=4):
#         res = ""
#         for i in range(n):
#             res+=random.choice(list(string.ascii_letters+string.digits))
#         print(res)
#         return res
#
#     #循环等待验证
#     def check(self):
#         while True:
#             s = input("请输入验证码")
#             if not s.strip() : continue
#             if s.strip().upper() == self.code.upper():
#                 print("验证成功")
#                 self.t.cancel()  # 关闭定时器
#                 return
#             else:
#                 print("验证码输入错误")
#
# c = Code()
# c.check()



# 线程queue:解决共享数据时锁的问题
# 进程不共享数据,线程共享数据。queue解决共享数据和锁的问题
# 基本用法
# from threading import Thread
# import queue
#
# q=queue.Queue(3) #队列,先进先出
# q.put("dsada")
# q.put(99)
# q.put([1,2,3])
# # q.put("haha",block=False,timeout=3)  #True堵塞,等待,加上timeout 就是最多等3秒,就不等了,如果是False不堵塞,后面的time加不加无所谓
# q.get()
# q.get()
# q.get()
# # q.get(block=True,timeout=3)  #跟那个一样

# 栈:就是队列的变形 ,后进先出也在queue模块内
# import queue
# q = queue.LifoQueue()

# #优先级队列:谁的优先级高谁先出来
# import queue
# q = queue.PriorityQueue()
# q.put([30,"数据"]) #数字越小,优先级越高
# #简单队列
# q = queue.SimpleQueue()



# 线程池,进程池,是为了解决服务端线程太多的问题
# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import time,random,os
# from multiprocessing import current_process
#
# def task(name):
#     print("%s is running pid:%s"%(name,os.getpid()))
#     time.sleep(random.randint(1,3))
#
# if __name__ == "__main__":
#     pool = ProcessPoolExecutor(4)  #默认是cpu的核数
#     for i in range(10):
#         pool.submit(task,"进程%s"%(i))
#
#     pool.shutdown()  #不让在开启进程了,计数开始,相当于jion
#     print("主函数")

# 同步调用:相当于串行,在原地等待
# 异步调用:相当于并发,不在原地等待
# 例子举办大胃王比赛:吃面包的功能,计算吃面包的个数
# 1.同步调用

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import time,random
#
# def eat(name):
#     print("%s is eatting..."%name)
#     time.sleep(random.randint(4,7))
#     return {"name":name,"count":random.randint(1,10)}
#
# def counts(data):
#     name = data["name"]
#     count = data["count"]
#     print("%s 吃了%s个面包"%(name,count))
#
# if __name__ == "__main__":
#     pool = ThreadPoolExecutor(5)
#     res1 = pool.submit(eat,"张三").result()
#     counts(res1)
#     res2 = pool.submit(eat,"李四").result()
#     counts(res1)
#     res3 = pool.submit(eat,"王五").result()
#     counts(res1)
#
# 2.异步调用,为了优化代码,为了不破坏代码逻辑,所以我们要用回调函数

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import time,random
#
# def eat(name):
#     print("%s is eatting..."%name)
#     time.sleep(random.randint(4,7))
#     return {"name":name,"count":random.randint(1,10)}
#
# def counts(data):
#     data = data.result()
#     name = data["name"]
#     count = data["count"]
#     print("%s 吃了%s个面包"%(name,count))
#
# if __name__ == "__main__":
#     pool = ThreadPoolExecutor(5)
#     pool.submit(eat,"张三").add_done_callback(counts)
#     #在后面加了回调函数,相当于把前面这个对象传给后面的函数,前面的是futures类型   duixiang.result()才是返回值
#     res2 = pool.submit(eat,"李四").add_done_callback(counts)
#
#     res3 = pool.submit(eat,"王五").add_done_callback(counts)
#

View Code

线程结构:

1.两种启动方式

2.线程的属性

3.守护线程

4.互斥锁

5.GIL全局解释器锁:特殊的互斥锁

6.死锁

7.递归锁

8.信号量

9.Event事件

10.定时器:用来写验证码

11.队列,栈

12.池子

13.异步调用+回调函数

 

正题来了=============================

"""
# from threading import Thread,currentThread,Lock,Semaphore,Event,Timer
# from concurrent.futures import ThreadPoolExecutor
# import time,os,random
# from threading import active_count

from threading import current_thread
获取线程名字
currentThread().getName()
Thread().getName()
修改线程名字
currentThread().setName("新名字")
Thread().setName("新名字")
开启线程
Thread().start()
等待线程结束
Thread().join()
获取线程在哪个进程中的pid
os.getpid()
获取父进程的pid
os.getppid()
设置守护线程
Thread().daemon = True
Thread().setDaemon(True)
获取当前活跃的线程数
active_count()
线程是否活跃
Thread().is_alive()
(一个锁)互斥锁:(GIL全局解释器锁:特殊的互斥锁)
mutex = Lock()
mutex.acquire()
mutex.release()
(两个及以上的锁,会发生死锁)---解决--》(递归锁解决)
信号量(本质是锁)  跟  线程池 有区别?
    1、实际工作的线程是谁创建的?
    使用线程池,实际工作线程由线程池创建;使用Seamphore,实际工作的线程由你自己创建。
    2、限流是否自动实现?
    线程池自动,Seamphore手动。

信号量怎么玩?
sm = Semaphore(2)
def fun():
    with sm:
        pass

Event事件: 碰到等待的时候我就用这个事件
event = Event()
event.wait(3)
event.set()
event.isSet()
event.clear()

定时器:(多少秒以后去执行哪个函数)
t = Timer(5,fun3,args=("wusen",))
t.start()
队列:(线程与进程的队列 在不同的模块内)
import queue
q=queue.Queue(3) #队列,先进先出
# q.put("haha",block=False,timeout=3)  #True堵塞,等待,加上timeout 就是最多等3秒,就不等了,如果是False不堵塞,后面的time加不加无所谓
q.get()

线程池
tps = ThreadPoolExecutor(2) #最大线程数
    for i in range(10):
        tps.submit(fun3,"参数一","参数二")
    tps.shutdown()
线程池基础上:同步调用(效率不高)--解决-->异步调用+回调函数()
def fun5(name):
    print("%s is running" % (name))
    ts = random.randint(4   ,10)
    time.sleep(ts)
    return {"name":name,"counts":ts}
def fun6(data):
    print(data)
    data = data.result()
    print(data)
    print("%s生产商品%s个"%(data["name"],data["counts"]))
tps = ThreadPoolExecutor(3)
for i in range(10):
    tps.submit(fun5,"t%s"%(i)).add_done_callback(fun6)
tps.shutdown()
"""
相关文章
|
6月前
|
Java Linux API
线程的认识
线程的认识
|
2月前
线程18
线程18
38 4
|
2月前
|
安全 Java
线程(二)
线程(二)
|
5月前
|
NoSQL Java 应用服务中间件
线程不够用怎么办?
### 并发编程挑战与解决方案概览 - 多线程导致线程爆炸,浪费CPU及可能导致JVM崩溃。线程池缓解问题,但仍有阻塞IO的效率低下。 - 非阻塞IO(如servlet3.1/Tomcat)和事件驱动(Reactive/Future)减少线程使用,但学习曲线陡峭。 - 轻量级线程如Netty、Spring Flux和虚拟线程(Java Loom)提升性能,但普及尚需时日。Java21引入虚拟线程,有望成未来性能关键。
216 10
|
6月前
|
存储 安全 Java
C++线程浅谈
C++线程浅谈
|
Java Linux 程序员
04.关于线程你必须知道的8个问题(下)
大家好,我是王有志。今天是Java面试中线程问题的最后一部分内容,包括我们来聊同步与互斥,线程的本质,调度,死锁以及线程的优缺点等问题。
114 1
04.关于线程你必须知道的8个问题(下)
|
算法 NoSQL Java
02.关于线程你必须知道的8个问题(上)
大家好,我是王有志,欢迎来到《Java面试都问啥?》。 今天我们来一起看看在面试中,关于线程各大公司大都喜欢问哪些问题。
104 1
02.关于线程你必须知道的8个问题(上)
|
算法 安全 程序员
线程小练习
线程小练习
|
C++
C++ | C++线程
c++创建线程的方式不止一种。
118 0