linux内核原子操作学习

简介: linux内核原子操作学习

参考

https://www.kernel.org/doc/html/latest/staging/index.html#atomic-types

说明

  • 下面注释里说的自增和自减表示的是在原子变量旧值的基础上
  • 这里列举的原子操作是以32位为例的,如果是64位,那么把前缀atomic替换成atomic64即可

数据类型

原型 说明
atomic_t 数据位宽是32位
atomic64_t 数据位宽是64位
atomic_long_t 在64位上等于atomic64_t,
在32位系统上等于atomic_t

初始化

#define ATOMIC_INIT(i) { (i) }
#define ATOMIC64_INIT(i)  { (i) }

示例:

atomic_t cnt = ATOMIC_INIT(0);
atomic64_t v = ATOMIC64_INIT(v0);

赋值操作

原型 说明 返回值
void atomic_set(atomic_t *v, int i) i赋值给原子变量v

读操作

原型 说明 返回值
int atomic_read(const atomic_t *v) 原子变量v的数值

linux还提供了带条件的读取方式,即如果条件不满足,就一直读取:

#define atomic_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#define atomic_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))
#define atomic64_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#define atomic64_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))

其中smp_cond_load_acquire或者smp_cond_load_relaxed中有一个死循环操作,如果c表示的condition不成立,那么会在循环中一直读取地址的值,知道条件成立。

#define smp_cond_load_acquire(ptr, cond_expr)       \
({                  \
  typeof(ptr) __PTR = (ptr);          \
  __unqual_scalar_typeof(*ptr) VAL;       \
  for (;;) {              \
    VAL = smp_load_acquire(__PTR);        \
    if (cond_expr)            \
      break;            \
    __cmpwait_relaxed(__PTR, VAL);        \
  }               \
  (typeof(*ptr))VAL;            \
})

加操作

原型 说明 返回值
void atomic_inc(atomic_t *v) 自增1
int atomic_inc_return(atomic_t *v) 自增1 返回新值
int atomic_fetch_inc(atomic_t *v) 自增1 返回旧值
void atomic_add(int i, atomic_t *v) 自增i
int atomic_add_return(int i, atomic_t *v) 自增i 返回新值
int atomic_fetch_add(int i, atomic_t *v) 自增i 返回旧值
bool atomic_inc_and_test(atomic_t *v) 自增1 如果新值为0,返回true;否则返回false
bool atomic_add_negative(int i, atomic_t *v) 自增i 如果新值为负数,返回true;否则返回false
int atomic_fetch_add_unless(atomic_t *v, int a, int u) unless表示if not。如果旧值跟u不等,自增a,返回旧值;
如果旧值等于u,只返回旧值,不会进行自增操作
返回旧值
bool atomic_add_unless(atomic_t *v, int a, int u) 如果旧值跟u不等,自增a,返回true
如果旧值等于u,返回旧值false,不会进行自增操作
表示是否进行了自增
bool atomic_inc_not_zero(atomic_t *v) 如果旧值不等于0,那么自增1,返回true;如果旧值等于0,返回false 表示是否进行了自增
bool atomic_inc_unless_negative(atomic_t *v) 如果旧值不是负数,那么自增1,返回true;如果旧值为负数,返回false 表示是否进行了自增

减操作

原型 说明 返回值
void atomic_dec(atomic_t *v) 自减1
int atomic_dec_return(atomic_t *v) 自减1 返回新值
int atomic_fetch_dec(atomic_t *v)
void atomic_sub(int i, atomic_t *v) 自减i
int atomic_sub_return(int i, atomic_t *v) 自减i 返回新值
int atomic_fetch_sub(int i, atomic_t *v) 自减i 返回旧值
bool atomic_sub_and_test(int i, atomic_t *v) 自减i 如果新值为0,返回true;否则返回false
bool atomic_dec_and_test(atomic_t *v) 自减1 如果新值为0,返回true;否则返回false
bool atomic_dec_unless_positive(atomic_t *v) 如果旧值不是正数(<=0),那么自减1,返回true;如果旧值是正数(>0),返回false 表示是否进行了自减操作

交换

原型 说明 返回值
int atomic_xchg(atomic_t *v, int i) i赋值给原子变量 返回旧值

比较交换

原型 说明 返回值
int atomic_cmpxchg(atomic_t *v, int old, int new) 如果旧值跟old相等,将new赋值给原子变量,返回旧值;
如果旧值跟old不等,返回new
返回值为整形
bool atomic_try_cmpxchg(atomic_t *v, int *old, int new) 如果旧值跟*old相等,将new赋值给原子变量,返回true
如果旧值跟*old不等,将new赋值给给*old,返回false
返回的是布尔类型,表示原子变量是否成功赋值

此外,在某些场景下需要可能需要同时比较交换两个指针的值,如果操作成功,返回true。内核提供了下面的宏:

#define cmpxchg_double(ptr, ...) \
({ \
  typeof(ptr) __ai_ptr = (ptr); \
  instrument_atomic_write(__ai_ptr, 2 * sizeof(*__ai_ptr)); \
  arch_cmpxchg_double(__ai_ptr, __VA_ARGS__); \
})

示例:

逻辑操作

原型 说明 返回值
void atomic_and(int i, atomic_t *v) 逻辑与
int atomic_fetch_and(int i, atomic_t *v) 逻辑与 返回旧值
void atomic_andnot(int i, atomic_t *v) ~i进行逻辑与
int atomic_fetch_andnot(int i, atomic_t *v) ~i进行逻辑与 返回旧值
void atomic_or(int i, atomic_t *v) 逻辑或
int atomic_fetch_or(int i, atomic_t *v) 逻辑或 返回旧值
void atomic_xor(int i, atomic_t *v) 异或
int atomic_fetch_xor(int i, atomic_t *v) 异或 返回旧值

test_and_xxx_bit

原型 说明 返回值
test_and_set_bit 检查并置1 如果已经置1,那么返回1。如果没有设置,那么进行置1,返回0
test_and_clear_bit 检查并清0 如果已经清0,那么返回0。如果没有清0,那么进行清0,返回1
test_and_change_bit 检查并改变 是1返回1,是0返回0,然后取反
change_bit
set_bit
clear_bit
相关文章
|
18天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
18天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
19天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
19天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
21天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
32 3
|
24天前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
35 6
|
23天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
1月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
101 8
|
1月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
307 6
|
1月前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
81 3