linux内核原子操作学习

简介: linux内核原子操作学习

参考

https://www.kernel.org/doc/html/latest/staging/index.html#atomic-types

说明

  • 下面注释里说的自增和自减表示的是在原子变量旧值的基础上
  • 这里列举的原子操作是以32位为例的,如果是64位,那么把前缀atomic替换成atomic64即可

数据类型

原型 说明
atomic_t 数据位宽是32位
atomic64_t 数据位宽是64位
atomic_long_t 在64位上等于atomic64_t,
在32位系统上等于atomic_t

初始化

#define ATOMIC_INIT(i) { (i) }
#define ATOMIC64_INIT(i)  { (i) }

示例:

atomic_t cnt = ATOMIC_INIT(0);
atomic64_t v = ATOMIC64_INIT(v0);

赋值操作

原型 说明 返回值
void atomic_set(atomic_t *v, int i) i赋值给原子变量v

读操作

原型 说明 返回值
int atomic_read(const atomic_t *v) 原子变量v的数值

linux还提供了带条件的读取方式,即如果条件不满足,就一直读取:

#define atomic_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#define atomic_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))
#define atomic64_cond_read_acquire(v, c) smp_cond_load_acquire(&(v)->counter, (c))
#define atomic64_cond_read_relaxed(v, c) smp_cond_load_relaxed(&(v)->counter, (c))

其中smp_cond_load_acquire或者smp_cond_load_relaxed中有一个死循环操作,如果c表示的condition不成立,那么会在循环中一直读取地址的值,知道条件成立。

#define smp_cond_load_acquire(ptr, cond_expr)       \
({                  \
  typeof(ptr) __PTR = (ptr);          \
  __unqual_scalar_typeof(*ptr) VAL;       \
  for (;;) {              \
    VAL = smp_load_acquire(__PTR);        \
    if (cond_expr)            \
      break;            \
    __cmpwait_relaxed(__PTR, VAL);        \
  }               \
  (typeof(*ptr))VAL;            \
})

加操作

原型 说明 返回值
void atomic_inc(atomic_t *v) 自增1
int atomic_inc_return(atomic_t *v) 自增1 返回新值
int atomic_fetch_inc(atomic_t *v) 自增1 返回旧值
void atomic_add(int i, atomic_t *v) 自增i
int atomic_add_return(int i, atomic_t *v) 自增i 返回新值
int atomic_fetch_add(int i, atomic_t *v) 自增i 返回旧值
bool atomic_inc_and_test(atomic_t *v) 自增1 如果新值为0,返回true;否则返回false
bool atomic_add_negative(int i, atomic_t *v) 自增i 如果新值为负数,返回true;否则返回false
int atomic_fetch_add_unless(atomic_t *v, int a, int u) unless表示if not。如果旧值跟u不等,自增a,返回旧值;
如果旧值等于u,只返回旧值,不会进行自增操作
返回旧值
bool atomic_add_unless(atomic_t *v, int a, int u) 如果旧值跟u不等,自增a,返回true
如果旧值等于u,返回旧值false,不会进行自增操作
表示是否进行了自增
bool atomic_inc_not_zero(atomic_t *v) 如果旧值不等于0,那么自增1,返回true;如果旧值等于0,返回false 表示是否进行了自增
bool atomic_inc_unless_negative(atomic_t *v) 如果旧值不是负数,那么自增1,返回true;如果旧值为负数,返回false 表示是否进行了自增

减操作

原型 说明 返回值
void atomic_dec(atomic_t *v) 自减1
int atomic_dec_return(atomic_t *v) 自减1 返回新值
int atomic_fetch_dec(atomic_t *v)
void atomic_sub(int i, atomic_t *v) 自减i
int atomic_sub_return(int i, atomic_t *v) 自减i 返回新值
int atomic_fetch_sub(int i, atomic_t *v) 自减i 返回旧值
bool atomic_sub_and_test(int i, atomic_t *v) 自减i 如果新值为0,返回true;否则返回false
bool atomic_dec_and_test(atomic_t *v) 自减1 如果新值为0,返回true;否则返回false
bool atomic_dec_unless_positive(atomic_t *v) 如果旧值不是正数(<=0),那么自减1,返回true;如果旧值是正数(>0),返回false 表示是否进行了自减操作

交换

原型 说明 返回值
int atomic_xchg(atomic_t *v, int i) i赋值给原子变量 返回旧值

比较交换

原型 说明 返回值
int atomic_cmpxchg(atomic_t *v, int old, int new) 如果旧值跟old相等,将new赋值给原子变量,返回旧值;
如果旧值跟old不等,返回new
返回值为整形
bool atomic_try_cmpxchg(atomic_t *v, int *old, int new) 如果旧值跟*old相等,将new赋值给原子变量,返回true
如果旧值跟*old不等,将new赋值给给*old,返回false
返回的是布尔类型,表示原子变量是否成功赋值

此外,在某些场景下需要可能需要同时比较交换两个指针的值,如果操作成功,返回true。内核提供了下面的宏:

#define cmpxchg_double(ptr, ...) \
({ \
  typeof(ptr) __ai_ptr = (ptr); \
  instrument_atomic_write(__ai_ptr, 2 * sizeof(*__ai_ptr)); \
  arch_cmpxchg_double(__ai_ptr, __VA_ARGS__); \
})

示例:

逻辑操作

原型 说明 返回值
void atomic_and(int i, atomic_t *v) 逻辑与
int atomic_fetch_and(int i, atomic_t *v) 逻辑与 返回旧值
void atomic_andnot(int i, atomic_t *v) ~i进行逻辑与
int atomic_fetch_andnot(int i, atomic_t *v) ~i进行逻辑与 返回旧值
void atomic_or(int i, atomic_t *v) 逻辑或
int atomic_fetch_or(int i, atomic_t *v) 逻辑或 返回旧值
void atomic_xor(int i, atomic_t *v) 异或
int atomic_fetch_xor(int i, atomic_t *v) 异或 返回旧值

test_and_xxx_bit

原型 说明 返回值
test_and_set_bit 检查并置1 如果已经置1,那么返回1。如果没有设置,那么进行置1,返回0
test_and_clear_bit 检查并清0 如果已经清0,那么返回0。如果没有清0,那么进行清0,返回1
test_and_change_bit 检查并改变 是1返回1,是0返回0,然后取反
change_bit
set_bit
clear_bit
相关文章
|
3天前
|
存储 安全 Linux
探索Linux操作系统的心脏:内核
在这篇文章中,我们将深入探讨Linux操作系统的核心—内核。通过简单易懂的语言和比喻,我们会发现内核是如何像心脏一样为系统提供动力,处理数据,并保持一切顺畅运行。从文件系统的管理到进程调度,再到设备驱动,我们将一探究竟,看看内核是怎样支撑起整个操作系统的大厦。无论你是计算机新手还是资深用户,这篇文章都将带你领略Linux内核的魅力,让你对这台复杂机器的内部运作有一个清晰的认识。
18 3
|
13天前
|
缓存 安全 Unix
Linux 内核黑客不可靠指南【ChatGPT】
Linux 内核黑客不可靠指南【ChatGPT】
|
13天前
|
Linux 开发者
Linux内核贡献成熟度模型 【ChatGPT】
Linux内核贡献成熟度模型 【ChatGPT】
|
13天前
|
网络协议 Ubuntu Linux
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
用Qemu模拟vexpress-a9 (三)--- 实现用u-boot引导Linux内核
|
13天前
|
Linux
用clang编译Linux内核
用clang编译Linux内核
|
13天前
|
Linux API C语言
Linux 内核补丁提交的清单 【ChatGPT】
Linux 内核补丁提交的清单 【ChatGPT】
|
13天前
|
Linux API 调度
关于在Linux内核中使用不同延迟/休眠机制 【ChatGPT】
关于在Linux内核中使用不同延迟/休眠机制 【ChatGPT】
|
网络协议 NoSQL Linux
阿里云 Linux 内核优化实战(sysctl.conf 和 ulimits )
一、sysctl.conf优化Linux系统内核参数的配置文件为 /etc/sysctl.conf 和 /etc/sysctl.d/ 目录。其读取顺序为: /etc/sysctl.d/ 下面的文件按照字母排序;然后读取 /etc/sysctl.conf 。
8371 1
|
4月前
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
23天前
|
存储 安全 Linux
在Linux中,内核调优配置文件名字有哪些?举例几个内核需要优化的参数配置?
在Linux中,内核调优配置文件名字有哪些?举例几个内核需要优化的参数配置?