JDK 1.8 LinkedList解码解读

简介: JDK 1.8 LinkedList解码解读

全局变量

/*LinkedList size*/
transient int size = 0;

    /**
     * Pointer to first node.当前链头
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node<E> first;

    /**
     * Pointer to last node.当前链尾
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;

构造函数

 public LinkedList() {
    }

//Collection集合转成LinkedList    
public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
   }    

addAll Collection集合添加至LinkedList

public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }
   }    

addAll 指定下标Collection集合添加至LinkedList

public boolean addAll(int index, Collection<? extends E> c){
        checkPositionIndex(index);//检查index是否超过size

        Object[] a = c.toArray();
        int numNew = a.length;
        //Collection本身为空集合则直接返回false
        if (numNew == 0)
            return false;
        //定义上个节点,成功节点
        Node<E> pred, succ;
        //如果从链尾添加则链尾Last为pred,succ为null
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            //否则获取index所在Node节点,指向succ
            succ = node(index);
            //获取succ的上个节点指向pred
            pred = succ.prev;
        }
        //迭代Collection的数组
        for (Object o : a) {
            @SuppressWarnings("unchecked")
            E e = (E) o;
            //创建新节点,并完成(pred<-e)左链关系
            Node<E> newNode = new Node<>(pred, e, null);
            //如果上个节点为空则newNode指向链头
            if (pred == null)
                first = newNode;
            //否则完成(pred<=>e)双向链表    
            else
                pred.next = newNode;
            //重置pred,令新节点newNode指向pred,然后继续迭代
            pred = newNode;
        }
        //链尾添加则将迭代完的pred指向last    
        if (succ == null) {
            last = pred;
        } else {
            //否则建立双向链表pred<=>succ
            pred.next = succ;
            succ.prev = pred;
        }
        //更新size
        size += numNew;
        modCount++;
        return true;
    }    

linkFirst 将E添加至链表头

  private void linkFirst(E e) {
        //备份原首元素至f
        final Node<E> f = first;
        //构造newNode,并指向为当前链表头first
        final Node<E> newNode = new Node<>(null, e, f);
        first = newNode;
        //如果原首元素为空,则newNode也是链表尾
        if (f == null)
            last = newNode;
        else
        //否则建立双向链关系 f<=>newNode
            f.prev = newNode;
        size++;
        modCount++;
    }    

linkFirst 将E添加至链表尾

 void linkLast(E e) {
        //备份尾元素
        final Node<E> l = last;
        //新建节点并完成单相关系l <= newNode
        final Node<E> newNode = new Node<>(l, e, null);
        //newNode成为新的链表尾
        last = newNode;
        //原链表尾为空,则newNode将成为新链表头
        if (l == null)
            first = newNode;
        else
        //否则建立双向链表关系 l <=> newNode
            l.next = newNode;
        size++;
        modCount++;
    }    

linkBefore 将E添加到非空节点succ的前面

void linkBefore(E e, Node<E> succ) {
        // assert succ != null;succ必须非空,否则空指针
        //备份succ的上个节点prev
        final Node<E> pred = succ.prev;
        //建立新节点,并完成单向链关系pred<-newNode->succ
        final Node<E> newNode = new Node<>(pred, e, succ);
        //pred<-newNode<=>succ
        succ.prev = newNode;
        //pred为空则newNode成为链表头
        if (pred == null)
            first = newNode;
        else
        //否则建立双向关系pred<=>newNode<=>succ
            pred.next = newNode;
        size++;
        modCount++;
    }    

linkBefore 将当前链头first拆除

private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null; //f必须为链表头并且非空
        //备份原链头,并用于返回
        final E element = f.item;
        //获取原链次节点
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        //原表链次节点成为当前链头first
        first = next;
        //如果原表链次节点为空,则尾也为空
        if (next == null)
            last = null;
        else
        //否则至链头的上节点为空
            next.prev = null;
        size--;
        modCount++;
        return element;
    }

linkBefore 将当前链尾last拆除

private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;//参数l必须为链尾并且非空
        //备份原链尾,并用于返回
        final E element = l.item;
        //原链尾上节点作为最新链尾last
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        //如果原表链尾二节点为空,则头也为空
        if (prev == null)
            first = null;
        else
        //否则至链头的下节点为空
            prev.next = null;
        size--;
        modCount++;
        return element;
    }

linkBefore拆除非空节点

E unlink(Node<E> x) {
        // assert x != null;//目标节点必须不为空
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        //目标节点的上节点prev为空,即目标节点为链表头,所以next就成为链头
        if (prev == null) {
            first = next;
        } else {
        //否则为建立单向关系prev->next 
            prev.next = next;
            x.prev = null;//拆除原节点prev关系
        }
    //目标节点的下节点next为空,即目标节点为链表尾,所以prev就成为链尾
        if (next == null) {
            last = prev;
        } else {
         //否则为建立双向关系prev<=>next 
            next.prev = prev;
            x.next = null;//拆除原节点next关系
        }
        //除原节点item置空,help gc
        x.item = null;
        size--;
        modCount++;
        return element;
    }

getFirst获取首节点元素

 public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }

getFirst获取尾节点元素

public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }

removeFirst移除头节点元素

 public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

removeLast移除尾节点元素

public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }

contains是否包含此元素

public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

indexOf() 元素o所在链表下标

 public int indexOf(Object o) {
        int index = 0;
        //o为空则迭代判断出首空元素,并返回下标
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
        ////o非空则迭代判断equals一致对象,并返回下标
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

indexOf() 元素o所在链表最后下标

  public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            //反向迭代
            //o为空则迭代判断出最后空元素,并返回下
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            //o非空则迭代判断equals最后一致对象,并返回下标
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

iremoveFirstOccurrence 移除首个元素o

 public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }

remove 移除首个元素o

  public boolean remove(Object o) {
        if (o == null) {
            //迭代出首空元素并完成拆链
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            //迭代出首元素并完成拆链
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

clear 清空链

  public void clear() {
        // Clearing all of the links between nodes is "unnecessary", but:
        // - helps a generational GC if the discarded nodes inhabit
        //   more than one generation
        // - is sure to free memory even if there is a reachable Iterator
        //迭代完成拆链
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }

get 获取所在下标元素

   public E get(int index) {
        checkElementIndex(index);//判断下标不能超过size
        return node(index).item;
    }

node 获取所在下标元素

   Node<E> node(int index) {
        // assert isElementIndex(index); ////判断下标不能超过size

        //判断index实在链前半还是链后半,选择正向还是反向迭代
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

removeLastOccurrence 拆除最后一个o所在链

    //都是反向迭代,分null和equals
   public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

jdk7相关

http://www.cnblogs.com/chenssy/p/3514524.html

目录
相关文章
|
1月前
|
算法 Java 索引
【数据结构与算法】4、双向链表(学习 jdk 的 LinkedList 部分源码)
【数据结构与算法】4、双向链表(学习 jdk 的 LinkedList 部分源码)
39 0
|
10月前
|
Java API 索引
LinkedList类【JDK源码分析】
LinkedList类【JDK源码分析】
39 0
|
存储 安全 Java
Java基于JDK 1.8的LinkedList源码详析
Java基于JDK 1.8的LinkedList源码详析
Java基于JDK 1.8的LinkedList源码详析
|
存储 安全 Java
JDK核心JAVA源码解析(7)- 集合相关(1) - LinkedList
JDK核心JAVA源码解析(7)- 集合相关(1) - LinkedList
|
Java 索引
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理(下)
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理(下)
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理(下)
|
存储 安全 Java
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理(上)
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理 (上)
Java集合源码剖析——基于JDK1.8中LinkedList的实现原理(上)
|
Java 索引
【JDK源码】Java中LinkedList的实现
LinkedList 底层数据结构是一个双向链表……
63 0
|
存储 Java API
走进 JDK 之 LinkedList
走进 JDK 之 LinkedList
走进 JDK 之 LinkedList
|
Java 索引
【集合框架】JDK1.8源码分析之LinkedList(七)
  在分析了ArrayList了之后,紧接着必须要分析它的同胞兄弟:LinkedList,LinkedList与ArrayList在底层的实现上有所不同,其实,只要我们有数据结构的基础,在分析源码的时候就会很简单,下面进入正题,LinkedList源码分析。
65 0
【集合框架】JDK1.8源码分析之LinkedList(七)
|
Java 索引
啃透JDK源码-LinkedList(下)
啃透JDK源码-LinkedList(下)
89 0
啃透JDK源码-LinkedList(下)