开源视频版GPT-4o?快速记忆,实时问答,拿下CVPR'24长视频问答竞赛冠军

简介: 【7月更文挑战第19天】Flash-VStream,一款类似GPT的开源视频模型,在CVPR'24赢得长视频问答冠军。该模型模拟人类记忆,实现实时视频流理解和快速问答,降低推理延迟和显存使用,同时推出VStream-QA基准,推动在线视频理解研究。尽管取得突破,但面临记忆限制和计算资源需求的挑战,且新基准的全面性有待检验。[论文链接](https://arxiv.org/abs/2406.08085)

在当今这个信息爆炸的时代,视频作为一种重要的信息载体,其重要性不言而喻。然而,随着视频内容的不断增长,如何有效地理解和处理这些视频信息成为了一大挑战。为了应对这一挑战,研究人员们提出了各种方法,其中一种备受关注的方法就是基于记忆的实时长视频流理解。

最近,一篇名为"Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams"的论文在计算机视觉和模式识别领域(CVPR)的2024年会议上引起了广泛关注。这篇论文由Yiqin Wang等人撰写,他们提出了一种名为Flash-VStream的新型视频语言模型,该模型模拟了人类的记忆机制,能够实时处理极长的视频流,并同时响应用户的查询。

Flash-VStream的出现,为视频理解领域带来了新的希望。它不仅在性能上取得了显著的提升,还在实时性和资源消耗方面表现出色。与现有模型相比,Flash-VStream在推理延迟和显存消耗方面实现了显著的减少,这对于实时理解在线视频流至关重要。

然而,这篇论文的创新之处不仅在于其提出的模型,还在于它对现有视频理解基准的扩展。由于现有的视频理解基准主要关注离线场景,而在线视频流作为现实世界中最常见的媒体形式之一,却很少受到关注。为了填补这一研究空白,作者提出了VStream-QA,这是一个专门为在线视频流理解设计的新型问答基准。

VStream-QA的出现,为研究人员提供了一个评估其方法在真实世界场景中性能的机会。通过在VStream-QA上进行比较,作者证明了Flash-VStream在处理具有挑战性的在线视频流方面的优越性。此外,为了验证其方法的通用性,作者还在现有的视频理解基准上进行了评估,并取得了最先进的性能。

然而,尽管Flash-VStream在性能和实时性方面表现出色,但也有一些潜在的问题需要考虑。首先,由于其模拟了人类的记忆机制,Flash-VStream可能无法处理一些超出人类记忆能力范围的视频流。其次,由于在线视频流的动态性质,Flash-VStream可能需要更多的计算资源来实时处理这些视频流。

此外,尽管VStream-QA为研究人员提供了一个评估其方法的基准,但目前还不清楚这个基准是否能够全面地评估各种不同的方法。因此,在将VStream-QA作为评估标准时,研究人员需要谨慎考虑其适用性和局限性。

论文链接:https://arxiv.org/abs/2406.08085

目录
相关文章
|
21天前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
43 4
|
1月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
140 60
|
26天前
|
人工智能 编解码 文字识别
阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!
阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。
|
29天前
DB-GPT 首期源码解读系列直播回顾(视频版)
🚀 DB-GPT首期源码解读系列上线啦! ✨直播视频看点满满:项目发起人陈发强亲临,初次剖析架构,完整呈现从设计思考到架构逻辑的全过程,让你全面了解 DB-GPT。
|
3月前
长上下文能力只是吹牛?最强GPT-4o正确率仅55.8%,开源模型不如瞎蒙
【8月更文挑战第10天】新研究NoCha挑战显示,即使是顶级的大型语言模型GPT-4o,在处理长篇幅文本时正确率仅55.8%,低于人类直观水平。该挑战基于近作英文小说,检验模型对整本书信息的理解与推理能力。结果显示,模型在全局推理上的表现不佳,倾向于依赖局部信息而非整体上下文,尤其是在复杂推理需求高的科幻小说上表现更弱。这一发现揭示了当前模型在处理长上下文任务上的局限性。论文链接: [https://arxiv.org/pdf/2406.16264](https://arxiv.org/pdf/2406.16264)。
123 65
|
2月前
|
数据可视化 Swift
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
旗舰端侧模型面壁「小钢炮」系列进化为全新 MiniCPM 3.0 基座模型,再次以小博大,以 4B 参数,带来超越 GPT-3.5 的性能。并且,量化后仅 2GB 内存,端侧友好。
小钢炮进化,MiniCPM 3.0 开源!4B参数超GPT3.5性能,无限长文本,超强RAG三件套!模型推理、微调实战来啦!
|
2月前
|
人工智能 自然语言处理 数据挖掘
【通义】AI视界|性能超越GPT-4o?最强大的开源AI模型来了……
本文介绍了五项最新AI技术动态,包括性能超越GPT-4o的开源AI模型Reflection70B、智谱清言App限时免费的视频通话功能、哈佛医学院研发的癌症诊断AI模型CHIEF、Replit推出的AI编程助手,以及英特尔与日本AIST合作设立的芯片制造研发中心。这些进展展示了AI领域的快速创新与广泛应用。更多详情,请访问通义官网体验。
|
2月前
|
测试技术 人机交互
没有等来OpenAI开源GPT-4o,等来了开源版VITA
【9月更文挑战第9天】近日,论文《Towards Open-Source Interactive Omni Multimodal LLM》介绍了VITA,一种基于Mixtral 8×7B的新型开源多模态大语言模型,能处理视频、图像、文本和音频等多模态数据,并提供先进的人机交互体验,填补了开源模型在多模态能力上的空白。经多任务学习及指令微调,VITA在多个基准测试中表现出色,但仍存在基础能力和嘈杂音频处理等方面的局限。更多详情见论文:https://arxiv.org/pdf/2408.05211
45 3
|
4月前
|
存储 测试技术 计算机视觉
开源视频版GPT-4o?快速记忆,实时问答,拿下CVPR'24长视频问答竞赛冠军
【7月更文挑战第24天】Flash-VStream, 一款模拟人脑记忆的视频语言模型,实现实时长视频流理解和问答,夺得CVPR'24竞赛桂冠。它采用动态记忆技术,高效存储检索信息,大幅降低推理延迟与显存消耗,超越现有模型。虽有资源限制及复杂查询处理难题,仍展现卓越通用性及先进性能。[详细论文](https://arxiv.org/abs/2406.08085)。
81 17
|
3月前
|
人工智能 API 异构计算
震惊AI界!DeepSeek挑战GPT-4o霸主地位,发布超低价开源大模型
震惊AI界!DeepSeek挑战GPT-4o霸主地位,发布超低价开源大模型
117 2

热门文章

最新文章