技术心得:卷积自编码器CAEs

简介: 技术心得:卷积自编码器CAEs

一、自编码器


自编码器(Autoencoder)是一种旨在将它们的输入复制到的输出的神经网络。他们通过将输入压缩成一种隐藏空间表示(latent-space representation),然后这种重构这种表示的输出进行工作。这种网络由两部分组成:


编码器:将输入压缩为潜在空间表示。可以用编码函数h = f(x)表示。


解码器:这部分旨在重构来自隐藏空间表示的输入。可以用解码函数r = g(h)表示//代码效果参考:http://www.lyjsj.net.cn/wx/art_23544.html


二、CAE


在CAE中,编码器由一个卷积层和一个池层组成,解码器只包括一个反卷积层。


卷积神经网络由一个由卷积和池化组成的神经网络。卷积的作用相当于一个滤波器,而池化则是提取不变特征。其网络结构如下图所示:


自编码器则是一个由输入层,隐含层,输出层所构成的神经网络。可以这样理解


卷积层-卷积:初始化k个卷积核(W),每个卷积核搭配一个偏置b,与输入x卷积()后生成k个特征图h,激活函数是。公式如下:


池化层-池化操作(Max Pooling): 对上面生成的特征图进行池化操作,时要保留池化时的位置关系的矩阵,方便之后反池化的操作。


池化层-自编码(反池化操作): 对上面生成的特征图进行反池化操作,用到保留池化时的位置关系的矩阵,将数据还原到原始大小的矩阵的相应的位置(在此可以参考卷积神经网络的一些过程)。


卷积层-自编码(反卷积的操作):每张特征图h与其对应的卷积核的转置 进行卷积操作并将结果求和,然后加上偏置c,激活函数仍然是。公式如下:


卷积层-更新权值:要更新权值,首先要确定损失函数,此处采用的MSE(最小均方差)函数,即:目标值减去实际值的平方和再求均值,2n是为了简化求导。其中。公//代码效果参考:http://www.lyjsj.net.cn/wx/art_23542.html

式如下:

参考CAE


反卷积


一句话解释:逆卷积{反卷积}相对于卷积在神经网络结构的正向和反向传播中做相反的运算。


逆卷积(Deconvolution)比较容易引起误会,转置卷积(Transposed Convolution)是一个更为合适的叫法.


不同的卷积类型


一般的卷积操作(我们这里只考虑最简单的无padding, stride=1的情况),都将输入的数据越卷越小。根据卷积核大小的不同,和步长的不同,输出的尺寸变化也很大。但是有的时候我们需要输入一个小的特征,输出更大尺寸的特征该怎么办呢?比如图像语义分割中往往要求最终输出的特征尺寸和原始输入尺寸相同,但在网络卷积核池化的过程中特征图的尺寸却逐渐变小。在这里转置卷积便能派上了用场。在数学上,转置卷积的操作也非常简单,把正常卷积的操作反过来即可。所以需要转置卷积。


参考抽丝剥茧,带你理解转置卷积(反卷积)


三、CNN的组成


多个经过训练的CAE被//代码效果参考:http://www.lyjsj.net.cn/wx/art_23540.html

堆叠到CNN中,用于学习增强最终分类性能的层次表示。

四、总结


参考深度学习中的卷积与反卷积


卷积操作是找到特定的局部图像特征(如边缘),之后通过池化层进行压缩的操作,而反卷积(转置卷积)可以理解为图像的复原操作,因此在进行CAEs(卷积自编码器)定义时去寻找反卷积操作之后的图像和原来的图像的差距,差距越小说明卷积构建的越合理,CAEs的数学形式:


下图为论文《Adaptive Deconvolutional Networks for Mid and High Level Feature Learning》通过deconvolutional networks学习图片特征的过程。右边为卷积通道,左边为反卷积通道。F、P分别表示卷积及pooling,F.T、U分别表示反卷积及unpooling。可以更好的理解:图片来自于深度学习中的卷积与反卷积


CAEs通过调整卷积层池化层对应的超参数(feature maps(z)和filters(f)等等)使得通过调整的超参数而重构的图像y^与原始图像y的差别最小。最终寻找到一个优秀的基本框架,包含一个卷积层和池化层以及对应的超参数,最后再通过叠加卷积层和池化层,构成庞大的神经网络,最后添加全连接层,从而形成一个CNN的网络结构。


缺点:卷积层和池化层的数量相对来说比较固定,一个卷积层后面肯定会跟随一个池化层,但对于目前的网络来说,这样的CAEs并不能构建出更新的更复杂的神经网络结构。

相关文章
|
9月前
|
机器学习/深度学习 存储 自然语言处理
卷积神经元网络CNN基础
卷积神经元网络CNN基础
86 1
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer:Attention机制、前馈神经网络、编码器与解码器
Transformer:Attention机制、前馈神经网络、编码器与解码器
314 1
|
9月前
|
机器学习/深度学习
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
414 1
|
9月前
|
机器学习/深度学习 编解码
LeViT-UNet:transformer 编码器和CNN解码器的有效整合
LeViT-UNet:transformer 编码器和CNN解码器的有效整合
207 0
|
9月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
555 0
|
11天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力yolov11精度提升
YOLOv11改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力yolov11精度提升
11 0
YOLOv11改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力yolov11精度提升
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-卷积Conv】RFAConv:感受野注意力卷积,创新空间注意力
【YOLO目标检测专栏】探索空间注意力局限,提出感受野注意力(RFA)机制,解决卷积核参数共享问题。RFAConv增强大尺寸卷积核处理能力,不增加计算成本,提升网络性能。已在YOLOv8中实现,详情见YOLO目标检测创新改进与实战案例专栏。
|
7月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv10改进-注意力机制】MSCAAttention多尺度卷积注意力
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
|
9月前
|
机器学习/深度学习 测试技术 网络架构
YOLOv8改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络
YOLOv8改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络
341 1
YOLOv8改进 | 主干篇 | ConvNeXtV2全卷积掩码自编码器网络