【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试

简介: 【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试

起因

  1. 公司最近有个客户需要把2-3w台设备各类数据存放到我们平台,这么多设备带来的数据量一年下来单表大概会达到720w,这样会使得平台某些分页查询或相关业务效率变慢。所以想让客户自己去阿里云买服务器,但是客户不想管理,想丢在我们平台。那也没办法,客户是上帝,能做是能做,不过得加钱!!! 哈哈哈
  2. 要帮客户存储数据,那得知道买多大的服务器合适,或者租多大服务器,一年得多少钱,这个得有一定的评估。所以就得生成一年的数据量了,进行存储和效率测试,系统后台的性能调优。

思路

  1. 要生成720w数据得有基础的2w台设备基础信息,所以现同普通方式生成了2w基础数据
  2. 720w = 2w * 360 每个表一天一笔数据,一年按照360算,一共720w
  3. 数据量有这么大,于是我 Ctrl+Alt+Del 打开任务管理器,看了看电脑的配置,评估一下CPU能扛得住怎样的摩擦,发现6核12处理器
  4. 那就给他来十个线程,每个线程处理2000基础数据生成72w,应该可以生成出来。

实践

1.新建定时器

@Slf4j
@Configuration
@EnableScheduling
public class InsertBatchMeterArchiveTask implements SchedulingConfigurer {
    @Autowired
    private MeterArchiveService meterArchiveService;
    @Override
    public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
        taskRegistrar.addTriggerTask(() -> {
            try {
                meterArchiveService.insertBatchBaseInfo();
            } catch (Exception e) {
                log.error("insertBatchBaseInfo meter error:{}", e.getMessage());
            }
        }, triggerContext -> {
            String cron = "0 37 12 * * ? "; 
            return new CronTrigger(cron).nextExecutionTime(triggerContext);
        });
    }
}
   
  1. 业务实现
public static List<Date> dateList = new ArrayList<>(360);
@Override
    public void insertBatchBaseInfo() throws InterruptedException {
        for (int i = 0; i < 360; i++) {
            Calendar instance = Calendar.getInstance();
            instance.setTime(CommonUtil.getCurrentDate());
            instance.add(Calendar.DAY_OF_YEAR, -i);
            dateList.add(instance.getTime());
        }
        // id 20062 --> 40061
        System.out.println(System.currentTimeMillis());
        List<MeterArchiveDO> meterArchiveDOS = meterArchiveMapper.selectList(new QueryWrapper<MeterArchiveDO>()
                .eq("area_id", 9).gt("id", 100));
        int listSize = meterArchiveDOS.size();
        int toIndex = 2000;
        //用map存起来新的分组后数据
        Map<String, List<MeterArchiveDO>> map = new HashMap();
        int keyToken = 0;
        for (int i = 0; i < meterArchiveDOS.size(); i += 2000) {
            //作用为toIndex最后没有2000条数据则剩余几条newList中就装几条
            toIndex = (i + 2000 > listSize ? listSize - i : toIndex);
            List newList = meterArchiveDOS.subList(i, i + toIndex);
            map.put("keyName" + keyToken, newList);
            keyToken++;
        }
        System.out.println(System.currentTimeMillis());
        // 处理生成数据
        dealGenerateData(map);
    }
  • 这里之前发生了线程不安全问题
    原因是在线程实现里面用到了Calendar进行时间处理,导致时间错乱,因为Calendar是单例的,每个线程任务都使用了这个变化的时间。所以通过声明全局变量,把360天都生成出来,传到线程处理业务中,就不会有这种情况了。
  1. 处理生成数据
/**
     * 处理生成数据
     *
     * @param map
     */
    private void dealGenerateData(Map map) throws InterruptedException {
        //线程池10个线程
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        //第一批十个任务
        List<StartAgent> agentsStart = new ArrayList();
        for (int i = 0; i < 10; i++) {
            agentsStart.add(new StartAgent((List<MeterArchiveDO>) map.get("keyName" + i), meterDayFlowWaterMapper,dateList));
        }
        List<List<StartAgent>> task = new ArrayList<>();
        task.add(agentsStart);
        //记录任务执行时间
        long t1 = System.currentTimeMillis();
        CountDownLatch c;
        //循环任务组
        for (List<StartAgent> startList : task) {
            //定义线程阻塞为10
            c = new CountDownLatch(11);
            for (StartAgent agent : startList) {
                agent.setCountDownLatch(c);
                executorService.submit(agent);
            }
            c.await();
        }
        executorService.shutdown();
    }
  1. 具体线程内业务实现
@Data
public class StartAgent implements Runnable {
    private CountDownLatch countDownLatch;
    private List<MeterArchiveDO> meterArchiveDOS;
    private MeterDayFlowWaterMapper meterDayFlowWaterMapper;
    private List<Date> dateList;
    public StartAgent(List<MeterArchiveDO> meterArchiveDOS, MeterDayFlowWaterMapper meterDayFlowWaterMapper, List<Date> dateList) {
        this.meterArchiveDOS = meterArchiveDOS;
        this.meterDayFlowWaterMapper = meterDayFlowWaterMapper;
        this.dateList = dateList;
    }
    @Override
    public void run() {
        try {
            System.out.println("开始启动节点:" + Thread.currentThread().getName());
            MeterDayFlowWaterDO meterDayFlowWaterDO = new MeterDayFlowWaterDO();
            for (MeterArchiveDO meterArchiveDO : meterArchiveDOS) {
                for (int i = 0; i < 360; i++) {
                    BeanUtils.copyProperties(meterArchiveDO, meterDayFlowWaterDO);
                    meterDayFlowWaterDO.setMeterReadTime(dateList.get(i));
                    meterDayFlowWaterDO.setMeterSaveTime(dateList.get(i));
                    meterDayFlowWaterDO.setMeterPositiveFlow("6.66");
                    meterDayFlowWaterDO.setMeterReverseFlow("0.05");
                    meterDayFlowWaterDO.setMeterIncrementFlow("1.38");
                    meterDayFlowWaterDO.setSync(1);
                    meterDayFlowWaterDO.setRemainingAmount("100");
                    meterDayFlowWaterMapper.insert(meterDayFlowWaterDO);
                }
            }
            System.out.println(Thread.currentThread().getName() + "执行完毕");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //注意一定要在finally调用countDown,否则产生异常导致没调用到countDown造成程序死锁
            countDownLatch.countDown();
        }
    }
    public void setCountDownLatch(CountDownLatch countDownLatch) {
        this.countDownLatch = countDownLatch;
    }
}

测试

欢迎大佬指点探讨!!!

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
19天前
|
数据采集 算法 数据管理
频标频稳比对测试系统重新定义测量边界
在上海张江实验室的超净间里,一束激光正以每秒 30 万公里的速度穿越真空腔,与原子跃迁频率进行着纳米级的较量。而在千里之外的西安高新区,一台黑色金属机箱内,SYN5609A 型频标比对测量系统正以同样的精度,为这场量子级的时间竞赛提供着基准坐标。这台看似普通的仪器,正在用双混频时差技术,将人类对时间的掌控精度推向新的维度。
|
2月前
|
jenkins 测试技术 Shell
利用Apipost轻松实现用户充值系统的API自动化测试
API在现代软件开发中扮演着连接不同系统与模块的关键角色,其测试的重要性日益凸显。传统API测试面临效率低、覆盖率不足及难以融入自动化工作流等问题。Apipost提供了一站式API自动化测试解决方案,支持零代码拖拽编排、全场景覆盖,并可无缝集成CI/CD流程。通过可视化界面,研发与测试人员可基于同一数据源协作,大幅提升效率。同时,Apipost支持动态数据提取、性能压测等功能,满足复杂测试需求。文档还以用户充值系统为例,详细介绍了从创建测试用例到生成报告的全流程,帮助用户快速上手并提升测试质量。
|
4月前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
150 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
|
4月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
116 20
|
4月前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
5月前
|
JavaScript NoSQL Java
基于SpringBoot+Vue实现的大学生体质测试管理系统设计与实现(系统源码+文档+数据库+部署)
面向大学生毕业选题、开题、任务书、程序设计开发、论文辅导提供一站式服务。主要服务:程序设计开发、代码修改、成品部署、支持定制、论文辅导,助力毕设!
|
9天前
|
Java 测试技术 容器
Jmeter工具使用:HTTP接口性能测试实战
希望这篇文章能够帮助你初步理解如何使用JMeter进行HTTP接口性能测试,有兴趣的话,你可以研究更多关于JMeter的内容。记住,只有理解并掌握了这些工具,你才能充分利用它们发挥其应有的价值。+
170 23
|
5月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
2月前
|
SQL 安全 测试技术
2025接口测试全攻略:高并发、安全防护与六大工具实战指南
本文探讨高并发稳定性验证、安全防护实战及六大工具(Postman、RunnerGo、Apipost、JMeter、SoapUI、Fiddler)选型指南,助力构建未来接口测试体系。接口测试旨在验证数据传输、参数合法性、错误处理能力及性能安全性,其重要性体现在早期发现问题、保障系统稳定和支撑持续集成。常用方法包括功能、性能、安全性及兼容性测试,典型场景涵盖前后端分离开发、第三方服务集成与数据一致性检查。选择合适的工具需综合考虑需求与团队协作等因素。
229 24
|
2月前
|
SQL 测试技术
除了postman还有什么接口测试工具
最好还是使用国内的接口测试软件,其实国内替换postman的软件有很多,这里我推荐使用yunedit-post这款接口测试工具来代替postman,因为它除了接口测试功能外,在动态参数的支持、后置处理执行sql语句等支持方面做得比较好。而且还有接口分享功能,可以生成接口文档给团队在线浏览。
139 2