【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试

简介: 【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试

起因

  1. 公司最近有个客户需要把2-3w台设备各类数据存放到我们平台,这么多设备带来的数据量一年下来单表大概会达到720w,这样会使得平台某些分页查询或相关业务效率变慢。所以想让客户自己去阿里云买服务器,但是客户不想管理,想丢在我们平台。那也没办法,客户是上帝,能做是能做,不过得加钱!!! 哈哈哈
  2. 要帮客户存储数据,那得知道买多大的服务器合适,或者租多大服务器,一年得多少钱,这个得有一定的评估。所以就得生成一年的数据量了,进行存储和效率测试,系统后台的性能调优。

思路

  1. 要生成720w数据得有基础的2w台设备基础信息,所以现同普通方式生成了2w基础数据
  2. 720w = 2w * 360 每个表一天一笔数据,一年按照360算,一共720w
  3. 数据量有这么大,于是我 Ctrl+Alt+Del 打开任务管理器,看了看电脑的配置,评估一下CPU能扛得住怎样的摩擦,发现6核12处理器
  4. 那就给他来十个线程,每个线程处理2000基础数据生成72w,应该可以生成出来。

实践

1.新建定时器

@Slf4j
@Configuration
@EnableScheduling
public class InsertBatchMeterArchiveTask implements SchedulingConfigurer {
    @Autowired
    private MeterArchiveService meterArchiveService;
    @Override
    public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
        taskRegistrar.addTriggerTask(() -> {
            try {
                meterArchiveService.insertBatchBaseInfo();
            } catch (Exception e) {
                log.error("insertBatchBaseInfo meter error:{}", e.getMessage());
            }
        }, triggerContext -> {
            String cron = "0 37 12 * * ? "; 
            return new CronTrigger(cron).nextExecutionTime(triggerContext);
        });
    }
}
   
  1. 业务实现
public static List<Date> dateList = new ArrayList<>(360);
@Override
    public void insertBatchBaseInfo() throws InterruptedException {
        for (int i = 0; i < 360; i++) {
            Calendar instance = Calendar.getInstance();
            instance.setTime(CommonUtil.getCurrentDate());
            instance.add(Calendar.DAY_OF_YEAR, -i);
            dateList.add(instance.getTime());
        }
        // id 20062 --> 40061
        System.out.println(System.currentTimeMillis());
        List<MeterArchiveDO> meterArchiveDOS = meterArchiveMapper.selectList(new QueryWrapper<MeterArchiveDO>()
                .eq("area_id", 9).gt("id", 100));
        int listSize = meterArchiveDOS.size();
        int toIndex = 2000;
        //用map存起来新的分组后数据
        Map<String, List<MeterArchiveDO>> map = new HashMap();
        int keyToken = 0;
        for (int i = 0; i < meterArchiveDOS.size(); i += 2000) {
            //作用为toIndex最后没有2000条数据则剩余几条newList中就装几条
            toIndex = (i + 2000 > listSize ? listSize - i : toIndex);
            List newList = meterArchiveDOS.subList(i, i + toIndex);
            map.put("keyName" + keyToken, newList);
            keyToken++;
        }
        System.out.println(System.currentTimeMillis());
        // 处理生成数据
        dealGenerateData(map);
    }
  • 这里之前发生了线程不安全问题
    原因是在线程实现里面用到了Calendar进行时间处理,导致时间错乱,因为Calendar是单例的,每个线程任务都使用了这个变化的时间。所以通过声明全局变量,把360天都生成出来,传到线程处理业务中,就不会有这种情况了。
  1. 处理生成数据
/**
     * 处理生成数据
     *
     * @param map
     */
    private void dealGenerateData(Map map) throws InterruptedException {
        //线程池10个线程
        ExecutorService executorService = Executors.newFixedThreadPool(10);
        //第一批十个任务
        List<StartAgent> agentsStart = new ArrayList();
        for (int i = 0; i < 10; i++) {
            agentsStart.add(new StartAgent((List<MeterArchiveDO>) map.get("keyName" + i), meterDayFlowWaterMapper,dateList));
        }
        List<List<StartAgent>> task = new ArrayList<>();
        task.add(agentsStart);
        //记录任务执行时间
        long t1 = System.currentTimeMillis();
        CountDownLatch c;
        //循环任务组
        for (List<StartAgent> startList : task) {
            //定义线程阻塞为10
            c = new CountDownLatch(11);
            for (StartAgent agent : startList) {
                agent.setCountDownLatch(c);
                executorService.submit(agent);
            }
            c.await();
        }
        executorService.shutdown();
    }
  1. 具体线程内业务实现
@Data
public class StartAgent implements Runnable {
    private CountDownLatch countDownLatch;
    private List<MeterArchiveDO> meterArchiveDOS;
    private MeterDayFlowWaterMapper meterDayFlowWaterMapper;
    private List<Date> dateList;
    public StartAgent(List<MeterArchiveDO> meterArchiveDOS, MeterDayFlowWaterMapper meterDayFlowWaterMapper, List<Date> dateList) {
        this.meterArchiveDOS = meterArchiveDOS;
        this.meterDayFlowWaterMapper = meterDayFlowWaterMapper;
        this.dateList = dateList;
    }
    @Override
    public void run() {
        try {
            System.out.println("开始启动节点:" + Thread.currentThread().getName());
            MeterDayFlowWaterDO meterDayFlowWaterDO = new MeterDayFlowWaterDO();
            for (MeterArchiveDO meterArchiveDO : meterArchiveDOS) {
                for (int i = 0; i < 360; i++) {
                    BeanUtils.copyProperties(meterArchiveDO, meterDayFlowWaterDO);
                    meterDayFlowWaterDO.setMeterReadTime(dateList.get(i));
                    meterDayFlowWaterDO.setMeterSaveTime(dateList.get(i));
                    meterDayFlowWaterDO.setMeterPositiveFlow("6.66");
                    meterDayFlowWaterDO.setMeterReverseFlow("0.05");
                    meterDayFlowWaterDO.setMeterIncrementFlow("1.38");
                    meterDayFlowWaterDO.setSync(1);
                    meterDayFlowWaterDO.setRemainingAmount("100");
                    meterDayFlowWaterMapper.insert(meterDayFlowWaterDO);
                }
            }
            System.out.println(Thread.currentThread().getName() + "执行完毕");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            //注意一定要在finally调用countDown,否则产生异常导致没调用到countDown造成程序死锁
            countDownLatch.countDown();
        }
    }
    public void setCountDownLatch(CountDownLatch countDownLatch) {
        this.countDownLatch = countDownLatch;
    }
}

测试

欢迎大佬指点探讨!!!

相关文章
|
12天前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
135 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
3月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
144 0
|
5月前
|
数据采集 算法 数据管理
频标频稳比对测试系统重新定义测量边界
在上海张江实验室的超净间里,一束激光正以每秒 30 万公里的速度穿越真空腔,与原子跃迁频率进行着纳米级的较量。而在千里之外的西安高新区,一台黑色金属机箱内,SYN5609A 型频标比对测量系统正以同样的精度,为这场量子级的时间竞赛提供着基准坐标。这台看似普通的仪器,正在用双混频时差技术,将人类对时间的掌控精度推向新的维度。
|
4月前
|
人工智能 缓存 自然语言处理
别再手搓测试数据了!AE测试数据智造系统揭秘
本文介绍如何通过构建基于大语言模型的测试数据智造Agent,解决AliExpress跨境电商测试中数据构造复杂、低效的问题,推动测试效率提升与智能化转型。
别再手搓测试数据了!AE测试数据智造系统揭秘
|
3月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
4月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
250 5
|
6月前
|
监控 测试技术 数据库连接
利用 RunnerGo 深度探索 API 性能测试:从理论到实践
API性能测试是保障应用稳定性和用户体验的关键环节。本文详细探讨了如何使用RunnerGo全栈测试平台进行高效API性能测试,涵盖测试计划创建、场景设计、参数配置到执行与分析全过程。通过电商平台促销活动案例,展示了高并发下的测试策略与优化措施,如代码与数据库查询优化、数据库连接池扩容、服务器资源配置调整及缓存策略实施等。最终显著提升系统性能,满足高并发需求。API性能测试需持续关注与优化,以适应业务发展和用户需求变化。
216 33
|
6月前
|
jenkins 测试技术 Shell
利用Apipost轻松实现用户充值系统的API自动化测试
API在现代软件开发中扮演着连接不同系统与模块的关键角色,其测试的重要性日益凸显。传统API测试面临效率低、覆盖率不足及难以融入自动化工作流等问题。Apipost提供了一站式API自动化测试解决方案,支持零代码拖拽编排、全场景覆盖,并可无缝集成CI/CD流程。通过可视化界面,研发与测试人员可基于同一数据源协作,大幅提升效率。同时,Apipost支持动态数据提取、性能压测等功能,满足复杂测试需求。文档还以用户充值系统为例,详细介绍了从创建测试用例到生成报告的全流程,帮助用户快速上手并提升测试质量。
|
8月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
360 0
|
2月前
|
前端开发 Java jenkins
Jmeter压力测试工具全面教程和使用技巧。
JMeter是一个能够模拟高并发请求以检查应用程序各方面性能的工具,包括但不限于前端页面、后端服务及数据库系统。熟练使用JMeter不仅能够帮助发现性能瓶颈,还能在软件开发早期就预测系统在面对真实用户压力时的表现,确保软件质量和用户体验。在上述介绍的基础上,建议读者结合官方文档和社区最佳实践,持续深入学习和应用。
512 10

热门文章

最新文章