扭曲算法

简介: 【6月更文挑战第27天】
  1. 计算除数 div:

    div = float(r ** 2 - dis_x_c ** 2 + dis_m_c ** 2)
    

    这里,r 是变形效果作用的半径,dis_x_c 是当前像素点 (x, y) 到变形中心 (cx, cy) 的距离,dis_m_c 是鼠标点 (mx, my) 到变形中心的距离。div 的计算基于几何关系,确保了变换的数学正确性。如果 div 为0,意味着分母为0,这将导致除法运算出错。因此,如果 div 为0,代码将设置一个非常小的值(接近0但不为0),以避免除以零的错误。

  2. 计算因子 factor:

    factor = ((r ** 2 - dis_x_c ** 2) / div) ** 2
    

    factor 是根据当前像素点与变形中心的距离以及鼠标点与变形中心的距离计算出来的一个因子。这个因子将用于调整像素点的新位置。通过平方 factor,算法增强了扭曲效果,使得靠近鼠标点的区域扭曲更大,远离的区域扭曲较小。

  3. 计算新坐标 uv:

    u = x - factor * (mx - cx)
    v = y - factor * (my - cy)
    

    这里,uv 是像素点 (x, y) 经过扭曲后的新坐标。计算方法是将原始坐标减去 factor 与鼠标点和中心点坐标差的乘积。这种计算方式是基于仿射变换的原理,但加入了距离加权,从而实现了非线性的扭曲效果。

这种扭曲算法的目的是模拟一种“橡皮筋”效果,即鼠标点拖动时,图像中心附近的区域会有较大的变形,而远离中心的区域变形较小,从而保持图像的连续性和平滑性。

简单代码示例:

下面是一个简化版的扭曲算法示例,它不涉及抗锯齿处理,只展示基本的扭曲逻辑:

import math

def warp(x, y, center, mouse, radius):
    cx, cy = center
    mx, my = mouse
    r = radius
    dis_x_c = math.sqrt((x - cx) ** 2 + (y - cy) ** 2)
    dis_m_c = math.sqrt((x - mx) ** 2 + (y - my) ** 2)
    div = float(r ** 2 - dis_x_c ** 2 + dis_m_c ** 2)
    if div == 0:
        div = 0.0001  # 避免除以零
    factor = ((r ** 2 - dis_x_c ** 2) / div) ** 2
    u = x - factor * (mx - cx)
    v = y - factor * (my - cy)
    return int(u), int(v)

# 假设参数
x, y = 5, 5  # 当前像素点坐标
center = (10, 10)  # 变形中心
mouse = (12, 12)  # 鼠标点
radius = 10  # 作用半径

# 计算新坐标
new_x, new_y = warp(x, y, center, mouse, radius)
print(f"Original: ({x}, {y}), New: ({new_x}, {new_y})")

这个示例展示了如何根据给定的参数计算一个像素点的新坐标。在实际应用中,你需要遍历图像的每个像素点,对它们应用这个 warp 函数,然后根据计算出的新坐标来重新构建扭曲后的图像。

目录
相关文章
|
7月前
|
算法 计算机视觉
使用积分图的自适应二值化算法
使用积分图的自适应二值化算法
|
6月前
|
算法 计算机视觉
图像处理之积分图应用四(基于局部均值的图像二值化算法)
图像处理之积分图应用四(基于局部均值的图像二值化算法)
558 0
|
6月前
|
算法 计算机视觉
扭曲
【6月更文挑战第29天】
71 0
|
6月前
|
算法 计算机视觉
图像处理之Lanczos采样放缩算法
图像处理之Lanczos采样放缩算法
89 0
|
6月前
|
算法 C语言 计算机视觉
图像处理之图像快速插值放缩算法
图像处理之图像快速插值放缩算法
41 0
|
编解码 算法 数据可视化
【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)
【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)
112 0
|
编解码 算法 Java
基于Gabor-小波滤波深度图表面法线的特征提取算法【通过正常Gabor-小波的直方图进行2D或3D特征提取】研究(Matlab代码实现)
基于Gabor-小波滤波深度图表面法线的特征提取算法【通过正常Gabor-小波的直方图进行2D或3D特征提取】研究(Matlab代码实现)
114 0
|
机器学习/深度学习 传感器 人工智能
【图像去噪】基于自适应全变分算法实现图像去噪附matlab代码
【图像去噪】基于自适应全变分算法实现图像去噪附matlab代码
|
机器学习/深度学习 传感器 算法
【图像去噪】基于自适应滤波器消除椒盐噪声图像附matlab代码
【图像去噪】基于自适应滤波器消除椒盐噪声图像附matlab代码
|
机器学习/深度学习 传感器 算法
【图像检测-边缘检测】基于蚁群算法优化图像边缘检测附matlab代码
【图像检测-边缘检测】基于蚁群算法优化图像边缘检测附matlab代码