题目链接:uva 10808 - Rational Resistors
题目大意:给出一个博阿含n个节点,m条导线的电阻网络,求节点a和b之间的等效电阻。
解题思路:基尔霍夫定律,不论什么一点的电流向量为0。就是说有多少电流流入该节点。就有多少电流流出。
对于每次询问的两点间等效电阻。先推断说两点是否联通。不连通的话绝逼是1/0(无穷大)。联通的话,将同一个联通分量上的节点都扣出来,如果电势作为变元,然后依据基尔霍夫定律列出方程,由于对于每一个节点的电流向量为0。所以每一个节点都有一个方程,全部与该节点直接连接的都会有电流流入。而且最后总和为0,(除了a,b两点,一个为1,一个为-1)。用高斯消元处理,可是这样列出的方程组不能准确求出节点的电势,仅仅能求出各个节点之间电势的关系。所以我们将a点的电势置为0,那么用求出的b点电势减去0就是两点间的电压,又由于电流设为1,所以等效电阻就是电压除以电流。
#include
#include
#include
using namespace std;
typedef long long type;
struct Fraction {
type member; // 分子;
type denominator; // 分母;
Fraction (type member = 0, type denominator = 1);
void operator = (type x) { this->set(x, 1); }
Fraction operator (const Fraction u);
Fraction operator / (const Fraction u);
Fraction operator + (const Fraction u);
Fraction operator - (const Fraction u);
Fraction operator = (const Fraction u) { return this = this u; }
Fraction operator /= (const Fraction u) { return this = this / u; }
Fraction operator += (const Fraction u) { return this = this + u; }
Fraction operator -= (const Fraction u) { return this = this - u; }
void set(type member, type denominator);
};
inline type gcd (type a, type b) {
return b == 0 ?
(a > 0 ? a : -a) : gcd(b, a % b);
}
inline type lcm (type a, type b) {
return a / gcd(a, b) b;
}
/Code/
/////////////////////////////////////////////////////
const int maxn = 105;
typedef long long ll;
typedef Fraction Mat【maxn】【maxn】;
int N, M, f【maxn】;
Mat G, A;
bool cmp (Fraction a, Fraction b) {
return a.member b.denominator < b.member a.denominator;
}
inline int getfar (int x) {
return x == f【x】 ? x : f【x】 = getfar(f【x】);
}
inline void link (int u, int v) {
int p = getfar(u);
int q = getfar(v);
f【p】 = q;
}
void init () {
scanf("%d%d", N, M);
for (int i = 0; i < N; i++) {
f【i】 = i;
for (int j = 0; j < N; j++)
G【i】【j】 = 0;
}
int u, v;
ll R;
for (int i = 0; i < M; i++) {
scanf("%d%d%lld", u, v, R);
if (u == v)
continue;
link(u, v);
G【u】【v】 += Fraction(1, R);
G【v】【u】 += Fraction(1, R);
}
}
Fraction gauss_elimin (int u, int v, int n) {
/
printf("\n");
for (int i = 0; i < n; i++) {
for (int j = 0; j <= n; j++)
printf("%lld/%lld ", A【i】【j】.member, A【i】【j】.denominator);
printf("\n");
}
/
for (int i = 0; i < n; i++) {
int r;
for (int j = i; j < n; j++)
if (A【j】【i】.member) {
r = j;
break;
}
if (r != i) {
for (int j = 0; j <= n; j++)
swap(A【i】【j】, A【r】【j】);
}
if (A【i】【i】.member == 0)
continue;
for (int j = i + 1; j < n; j++) {
Fraction t = A【j】【i】 / A【i】【i】;
for (int k = 0; k = 0; i--) {
for (int j = i+1; j < n; j++) {
if (A【j】【j】.member)
A【i】【n】 -= A【i】【j】 A【j】【n】 / A【j】【j】;
}//代码效果参考:http://www.ezhiqi.com/zx/art_5736.html
}
/
Fraction U = A【u】【n】 / A【u】【u】;
printf("%lld/%lld!\n", A【u】【n】.member, A【u】【n】.denominator);
printf("%lld/%lld!\n", A【u】【u】.member, A【u】【u】.denominator);
printf("%lld/%lld\n", U.member, U.denominator);
Fraction V = A【v】【n】 / A【v】【v】;
printf("%lld/%lld\n", V.member, V.denominator);
/
return A【u】【n】 / A【u】【u】 - A【v】【n】 / A【v】【v】;
}
Fraction solve (int u, int v) {
int n = 0, hash【maxn】;
int hu, hv;
for (int i = 0; i < N; i++) {
if (i == u)
hu = u;
if (i == v)
hv = v;
if (getfar(i) == getfar(u))
hash【n++】 = i;
}
n++;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++)
A【i】【j】 = 0;
}
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1; j++) {
if (i == j)
continue;
int p = hash【i】;
int q = hash【j】;
A【i】【i】 += G【p】【q】;
A【i】【j】 -= G【p】【q】;
}
}
A【hu】【n】 = 1;
A【hv】【n】 = -1;
A【n-1】【0】 = 1;
return gauss_elimin (hu, hv, n);
}
int main () {
int cas;
scanf("%d", cas);
for (int kcas = 1; kcas <= cas; kcas++) {
init();
int Q, u, v;
scanf("%d", Q);
printf("Case #%d:\n", kcas);
for (int i = 0; i < Q; i++) {
scanf("%d%d", u, v);
printf("Resistance between %d and %d is ", u, v);
if (getfar(u) == getfar(v)) {
Fraction ans = solve(u, v);
printf("%lld/%lld\n", ans.member, ans.denominator);
} else
printf("1/0\n");
}
printf("\n");
}
return 0;
}
/////////////////////////////////////////////////////
Fraction::Fraction (type member, type denominator) {
this->set(member, denominator);
}
Fraction Fraction::operator (const Fraction u) {
type tmp_p = gcd(member, u.denominator);
type tmp_q = gcd(u.member, denominator);
return Fraction( (member / tmp_p) (u.member / tmp_q), (denominator / tmp_q) (u.denominator / tmp_p) );
}
Fraction Fraction::operator / (const Fraction u) {
type tmp_p = gcd(member, u.member);
type tmp_q = gcd(denominator, u.denominator);
return Fraction( (member / tmp_p) (u.denominator / tmp_q), (denominator / tmp_q) (u.member / tmp_p));
}
Fraction Fraction::operator + (const Fraction u) {
type tmp_l = lcm (denominator, u.denominator);
return Fraction(tmp_l / denominator member + tmp_l / u.denominator u.member, tmp_l);
}
Fraction Fraction::operator - (const Fraction u) {
type tmp_l = lcm (denominator, u.denominator);
return Fraction(tmp_l / denominator member - tmp_l / u.denominator u.member, tmp_l);
}
void Fraction::set (type member, type denominator) {
if (denominator == 0) {
denominator = 1;
member = 0;
}
if (denominator < 0) {
denominator = -denominator;
member = -member;
}
type tmp_d = gcd(member, denominator);
this->member = member / tmp_d;
this->denominator = denominator / tmp_d;
}