使用kafka-clients操作数据(java)

简介: 使用kafka-clients操作数据(java)

一、添加依赖

     <!--    kafka-clients-->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.5.1</version>
        </dependency>

二、生产者

自定义分区,可忽略

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
 
import java.util.Map;
 
public class MyPatitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
 
        String msgStr = value.toString();
        if(msgStr.contains("a")){
            return 1;
        }
        return 0;
    }
 
    @Override
    public void close() {
 
    }
 
    @Override
    public void configure(Map<String, ?> configs) {
 
    }
}

1、普通消息

 public static void main(String[] args) throws ExecutionException, InterruptedException {
        //配置
        Properties properties = new Properties();
        //连接参数
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.157.130:9092");
        //序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //关联自定义分区器 可选
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "org.minos.kafka.producer.MyPatitioner");
 
        //优化参数 可选
        //缓冲器大小 32M
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 30 * 1024 * 1024);
        //批次大小
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16 * 1024);
        //Linger.ms
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 5);
        //压缩
        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "snappy");
        //acks
        properties.put(ProducerConfig.ACKS_CONFIG, "-1");
        //重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG, 3);
 
 
        //创建生产者
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
 
        //异步发送数据
        for (int i = 0; i < 10; i++) {
            //给first主题发消息
            kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i));
            //回调异步发送
            kafkaProducer.send(new ProducerRecord<String, String>("first", "hello2" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("主题:" + recordMetadata.topic() + "分区:" + recordMetadata.partition());
                    }
                }
            });
            kafkaProducer.send(new ProducerRecord<String, String>("first", "a" + i), new Callback() {
                @Override
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null) {
                        System.out.println("主题:" + recordMetadata.topic() + "分区" + recordMetadata.partition() + "a");
                    }
                }
            });
            Thread.sleep(500);
        }
 
        //同步
        for (int i = 0; i < 10; i++) {
            //给first主题发消息
            kafkaProducer.send(new ProducerRecord<String, String>("first", "sync_hello" + i)).get();
        }
 
        //关闭资源
        kafkaProducer.close();
    }
root@ubuntu2203:/usr/local/kafka_2.12-3.5.1/bin# ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic first
a0
hello0
hello20
a1
hello1
hello21
a2
hello2
hello22
a3
hello3
hello23
a4
hello4
hello24
a5
hello5
hello25
a6
hello6
hello26
a7
hello7
hello27
a8
hello8
hello28
a9
hello9
hello29
sync_hello0
sync_hello1
sync_hello2
sync_hello3
sync_hello4
sync_hello5
sync_hello6
sync_hello7
sync_hello8
sync_hello9

2、事务消息

 public static void main(String[] args) throws ExecutionException, InterruptedException {
        //配置
        Properties properties = new Properties();
        //连接参数
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.157.130:9092");
        //序列化
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //关联自定义分区器 可选
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "org.minos.kafka.producer.MyPatitioner");
 
        //优化参数 可选
        //缓冲器大小 32M
        properties.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 30 * 1024 * 1024);
        //批次大小
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 16 * 1024);
        //Linger.ms
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 5);
        //压缩
        properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "snappy");
        //acks
        properties.put(ProducerConfig.ACKS_CONFIG, "-1");
        //重试次数
        properties.put(ProducerConfig.RETRIES_CONFIG, 3);
 
        //指定事务ID
        properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transactional_id_01");
        properties.put("enable.idempotence", "true");
 
        //创建生产者
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties);
 
        //事务消息 初始化
        kafkaProducer.initTransactions();
        //开始事务
        kafkaProducer.beginTransaction();
        try {
            kafkaProducer.send(new ProducerRecord<String, String>("first", "Transactions")).get();
            //提交事务
            kafkaProducer.commitTransaction();
        } catch (Exception e) {
            //终止事务
            kafkaProducer.abortTransaction();
        } finally {
            //关闭资源
            kafkaProducer.close();
        }
    }
root@ubuntu2203:/usr/local/kafka_2.12-3.5.1/bin# ./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic first
Transactions
目录
打赏
0
6
6
0
139
分享
相关文章
Java|小数据量场景的模糊搜索体验优化
在小数据量场景下,如何优化模糊搜索体验?本文分享一个简单实用的方案,虽然有点“土”,但效果还不错。
20 0
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
Java爬虫获取微店快递费用item_fee API接口数据实现
本文介绍如何使用Java开发爬虫程序,通过微店API接口获取商品快递费用(item_fee)数据。主要内容包括:微店API接口的使用方法、Java爬虫技术背景、需求分析和技术选型。具体实现步骤为:发送HTTP请求获取数据、解析JSON格式的响应并提取快递费用信息,最后将结果存储到本地文件中。文中还提供了完整的代码示例,并提醒开发者注意授权令牌、接口频率限制及数据合法性等问题。
深潜数据海洋:Java文件读写全面解析与实战指南
通过本文的详细解析与实战示例,您可以系统地掌握Java中各种文件读写操作,从基本的读写到高效的NIO操作,再到文件复制、移动和删除。希望这些内容能够帮助您在实际项目中处理文件数据,提高开发效率和代码质量。
67 4
|
3月前
|
使用Java和Spring Data构建数据访问层
本文介绍了如何使用 Java 和 Spring Data 构建数据访问层的完整过程。通过创建实体类、存储库接口、服务类和控制器类,实现了对数据库的基本操作。这种方法不仅简化了数据访问层的开发,还提高了代码的可维护性和可读性。通过合理使用 Spring Data 提供的功能,可以大幅提升开发效率。
106 21
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
125 7
【潜意识Java】深入理解MyBatis的Mapper层,以及让数据访问更高效的详细分析
深入理解MyBatis的Mapper层,以及让数据访问更高效的详细分析
232 1
WSDL2Java操作指南
1. 安装JDK1.5, 配置系统环境变量:     下载安装JDK后, 设置环境变量:     JAVA_HOME=C:\Program Files\Java\jdk1.5.0_02     Path=%Path%;%JAVA_HOME%\bin(这里的%Path%指你系统已经有的一系列配置)     CLASSPATH=%JAVA_HOME%\lib  2. 下载axis,
1469 0
|
2月前
|
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
213 60
【Java并发】【线程池】带你从0-1入门线程池