Co-STAR 模型

简介: Co-STAR 模型

Co-STAR 模型是一种结构化的提示词设计方法,旨在帮助你更清晰地表达需求,使得人工智能模型能够更准确地理解和响应。Co-STAR 是一个缩写,代表 Context(上下文)、Objective(目标)、Scope(范围)、Task(任务)、Action(行动)和 Result(结果)。下面我们通过几个例子来展示如何使用 Co-STAR 模型来设计提示词。

文本生成示例

假设我们希望 AI 生成一段关于未来科技的描述。我们可以用 Co-STAR 模型来设计提示词:

  1. Context(上下文):在未来的世界中,科技高度发达。
  2. Objective(目标):描述未来科技的特点和应用。
  3. Scope(范围):主要涉及医疗、交通和日常生活。
  4. Task(任务):生成一段详细描述。
  5. Action(行动):AI 应该生成自然流畅的文本。
  6. Result(结果):得到一段500字左右的描述性文字。

组合成提示词:

In a future world where technology is highly advanced, describe the characteristics and applications of future technology. Focus on areas such as healthcare, transportation, and daily life. Generate a detailed description that is around 500 words long.

然后,我们用这个提示词调用 GPT-3 或类似模型:

from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = 'gpt2'
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
prompt = ("In a future world where technology is highly advanced, describe the characteristics "
          "and applications of future technology. Focus on areas such as healthcare, transportation, "
          "and daily life. Generate a detailed description that is around 500 words long.")
input_ids = tokenizer.encode(prompt, return_tensors='pt')
output = model.generate(input_ids, max_length=600, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)

图像生成示例

假设我们希望 AI 生成一张描述未来城市的图像。我们可以用 Co-STAR 模型来设计提示词:

  1. Context(上下文):未来的城市繁荣而高科技。
  2. Objective(目标):展示未来城市的外观和特点。
  3. Scope(范围):包括建筑、交通工具和公共设施。
  4. Task(任务):生成一张图像。
  5. Action(行动):AI 应该生成视觉上吸引人的图像。
  6. Result(结果):得到一张反映未来城市风貌的高清图像。

组合成提示词:

Generate an image of a prosperous and high-tech future city. The image should include elements like buildings, vehicles, and public facilities. The result should be a visually appealing high-resolution image reflecting the futuristic cityscape.

然后,我们用这个提示词调用 DALL-E 或类似模型:

from transformers import DalleBartProcessor, DalleBartForConditionalGeneration
import torch
from PIL import Image
processor = DalleBartProcessor.from_pretrained('facebook/dalle-mini')
model = DalleBartForConditionalGeneration.from_pretrained('facebook/dalle-mini')
prompt = ("Generate an image of a prosperous and high-tech future city. The image should include "
          "elements like buildings, vehicles, and public facilities. The result should be a visually "
          "appealing high-resolution image reflecting the futuristic cityscape.")
inputs = processor([prompt], return_tensors="pt")
with torch.no_grad():
    outputs = model.generate(**inputs, num_inference_steps=50)
image = processor.batch_decode(outputs, output_type="pil")
image[0].show()

总结

通过使用 Co-STAR 模型来设计提示词,你可以更清晰地定义需求,使得 AI 能够更准确地理解和执行任务。无论是文本生成还是图像生成,结构化的提示词都能帮助提高生成内容的质量和相关性。

当使用 Co-STAR 模型来设计提示词时,确保每个部分都清晰明了,同时也要尽量简洁。这有助于确保人工智能模型能够准确理解你的意图,并生成符合预期的输出。另外,在实际使用中,你可以根据需要灵活调整每个部分的内容,以便更好地满足特定的任务需求。

在实际应用中,可以根据具体情况对提示词进行微调,以使其更适合特定的场景和任务。例如,如果你需要生成关于未来食品科技的描述,可以将上述示例中的关键词和描述内容替换为与食品科技相关的内容。这样能够更准确地引导人工智能模型生成你所期望的内容。

目录
相关文章
|
存储 Kubernetes 网络协议
使用 K8S 部署 RSS 全套自托管解决方案 - RssHub + Tiny Tiny Rss
使用 K8S 部署 RSS 全套自托管解决方案 - RssHub + Tiny Tiny Rss
|
3月前
|
存储 人工智能 数据可视化
从零构建能自我优化的AI Agent:Reflection和Reflexion机制对比详解与实现
AI能否从错误中学习?Reflection与Reflexion Agent通过生成-反思-改进循环,实现自我优化。前者侧重内容精炼,后者结合外部研究提升准确性,二者分别适用于创意优化与知识密集型任务。
513 9
从零构建能自我优化的AI Agent:Reflection和Reflexion机制对比详解与实现
|
分布式计算 自然语言处理 DataWorks
高效使用 PyODPS 最佳实践
以更清晰的认知 PyODPS,DataWorks PyODPS 节点以及 PyODPS 何时在计算集群运行,开发者如何利用 PyODPS 更高效地进行数据开发。
18461 3
高效使用 PyODPS 最佳实践
|
API Windows
怎么申请 bing api key
1:打开网址 https://login.live.com/ 注册帐号并登录(点击上图中的登录按钮即可),在新窗口点击下方的“立即注册”(有帐号的可以直接登录)2:填写相关信息(推荐使用hotmail邮箱),填写完毕后点击下方的 即可PS:国家或地区请勿选择‘中国’,否则会出现‘在你的市场中未提供...
20459 1
|
8月前
|
人工智能 弹性计算 运维
阿里云 MCP Server 开箱即用!
本文介绍了如何通过alibaba-cloud-ops-mcp-server和MCP(Model Context Protocol)实现AI助手对阿里云资源的复杂任务操作。内容涵盖背景、准备步骤(如使用VS Code与Cline配置MCP Server)、示例场景(包括创建实例、监控实例、运行命令、启停实例等),以及支持的工具列表和参考文档。借助这些工具,用户可通过自然语言与AI助手交互,完成ECS实例管理、VPC查询、云监控数据获取等运维任务,实现高效“掌上运维”。
|
3月前
|
人工智能 缓存 安全
阿里云发布《AI 原生应用架构白皮书》
阿里云联合阿里巴巴爱橙科技,共同发布《AI 原生应用架构白皮书》,围绕 AI 原生应用的 DevOps 全生命周期,从架构设计、技术选型、工程实践到运维优化,对概念和重难点进行系统的拆解,并尝试提供一些解题思路。白皮书覆盖 AI 原生应用的 11 大关键要素,获得 15 位业界专家联名推荐,来自 40 多位一线工程师实践心的,全书合计超 20w 字,分为 11 章。
2034 23
|
8月前
|
人工智能 Java API
MCP协议重大升级,Spring AI Alibaba联合Higress发布业界首个Streamable HTTP实现方案
本文由Spring AI Alibaba Contributor刘军、张宇撰写,探讨MCP官方引入的全新Streamable HTTP传输层对原有HTTP+SSE机制的重大改进。文章解析Streamable HTTP的设计思想与技术细节,并介绍Spring AI Alibaba开源框架提供的Java实现,包含无状态服务器模式、流式进度反馈模式等多种场景的应用示例。同时,文章还展示了Spring AI Alibaba + Higress的完整可运行示例,分析当前实现限制及未来优化方向,为开发者提供参考。
|
7月前
|
人工智能 Java 程序员
JManus - 面向 Java 开发者的开源通用智能体
JManus 是一个以 Java 为核心、完全开源的 OpenManus 实现,隶属于 Spring AI Alibaba 项目。它旨在让 Java 程序员更便捷地使用 AI 技术,支持多 Agent 框架、网页配置 Agent、MCP 协议和 PLAN-ACT 模式。项目在 GitHub 上已获近 3k star,可集成多个大模型如 Claude 3.5 和 Qwen3。开发者可通过 IDE 或 Maven 快速运行项目,体验智能问答与工具调用功能。欢迎参与开源共建,推动通用 AI Agent 框架发展。
10217 65
|
8月前
|
人工智能 运维 安全
函数计算支持热门 MCP Server 一键部署
MCP(Model Context Protocol)自2024年发布以来,逐渐成为AI开发领域的实施标准。OpenAI宣布其Agent SDK支持MCP协议,进一步推动了其普及。然而,本地部署的MCP Server因效率低、扩展性差等问题,难以满足复杂生产需求。云上托管成为趋势,函数计算(FC)作为Serverless算力代表,提供一键托管开源MCP Server的能力,解决传统托管痛点,如成本高、弹性差、扩展复杂等。通过CAP平台,用户可快速部署多种热门MCP Server,体验高效灵活的AI应用开发与交互方式。
3638 10