社交软件红包技术解密(十三):微信团队首次揭秘微信红包算法,为何你抢到的是0.01元

本文涉及的产品
文档翻译,文档翻译 1千页
文本翻译,文本翻译 100万字符
图片翻译,图片翻译 100张
简介: 本文中,我们将介绍几种主流的IM红包分配算法,相信聪明的你一定能从中窥见微信红包技术实现的一些奥秘。

本文由腾讯梁中原分享,原题“红包算法揭秘!哪段代码让你只抢了0.01元?”,下文进行了排版和内容优化等。

1、引言

在上一篇《来看看微信十年前的IM消息收发架构,你做到了吗》的文章中,有用户提到想了解自己每次微信红包只能抽中 0.01 元的反向手气最佳是怎么在技术上实现的,于是就有了本篇文章的诞生。

其实,微信红包最初在产品设计上有过很多思路,最初曾以多档次、按比例分配的方式,但最后大家试用下来发现还是随机才好玩。那种看到有人抢到 100 块,有人 0.01 元的快乐无以言喻。

最初的随机算法中,领取越早获得大额红包几率越高,为了避免抢红包变成一个拼手速的游戏,后来的随机算法也对随机范围区间进行了一定调整。

本文中,我们将介绍几种主流的IM红包分配算法,相信聪明的你一定能从中窥见微信红包技术实现的一些奥秘。

 

 

技术交流:

- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM

- 开源IM框架源码:https://github.com/JackJiang2011/MobileIMSDK备用地址点此

(本文已同步发布于:http://www.52im.net/thread-4661-1-1.html

2、系列文章

社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等

社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进

社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节

社交软件红包技术解密(四):微信红包系统是如何应对高并发的

社交软件红包技术解密(五):微信红包系统是如何实现高可用性的

社交软件红包技术解密(六):微信红包系统的存储层架构演进实践

社交软件红包技术解密(七):支付宝红包的海量高并发技术实践

社交软件红包技术解密(八):全面解密微博红包技术方案

社交软件红包技术解密(九):谈谈手Q春节红包的设计、容灾、运维、架构等

社交软件红包技术解密(十):手Q客户端针对2020年春节红包的技术实践

社交软件红包技术解密(十一):最全解密微信红包随机算法(含演示代码)

社交软件红包技术解密(十二):解密抖音春节红包背后的技术设计与实践

社交软件红包技术解密(十三):微信团队首次揭秘微信红包算法,为何你抢到的是0.01元》(* 本文)

3、主流的红包算法1:普通随机法

普通随机法,简单来说其实就是剩余值随机。

普通随机:用余下的值为最大区间进行随机,但可能不均匀,有些人一把随到99,下面很多人都没得随机了。

以下是算法示例:

// 剩余值随机 ,优点:逻辑简单,缺点:随机区间步步减少,可以明显看出随机值的递减特性,

对后面玩家极不公平,且容易被抓到规律,造成舆论不满。

// 做抢红包体验很差,稍微弥补一点的方案:shuffle一下随机数组,让看起来不那么递减明显。

$res = LeftMoneyRedbag($Moneys, $userNums, $isEveryHave);

 

//余值随机红包算法 ,一般都是使用剩余值在计算一把。

function LeftMoneyRedbag($Moneys, $userNums, $isEveryHave = 1, $baseMoney = 1)

{

   if ($Moneys <= 0 || $userNums <= 0) {

       return ['code' => -3, 'msg' => '红包金额或拆红包总人数不合法'];

   }

   if ($isEveryHave && $userNums > $Moneys) {

       return ['code' => -4, 'msg' => '红包数量不足'];

   }

 

   //是否每个人都必有

   if ($isEveryHave) {

       $Moneys = $Moneys - ($userNums * $baseMoney); //此时剩余money可能会无法随机到每一个人

   }

 

   $userMoney = [];

   //正式执行余值随机

   $leftMoneys = $Moneys; //可能 50分钱 分100人

   $leftUserNums = $userNums;

   while ($leftUserNums > 1) { // 考虑:就一个用户瓜分

       // echo "leftMoneys = " . $leftMoneys . " , leftUserNums = " . $leftUserNums . "<br>";

       $RandVal = 0;

       if ($leftMoneys > 0) { //考虑:剩余的钱不够分

           $RandVal = mt_rand(0, $leftMoneys);

           $leftMoneys = $leftMoneys - $RandVal;

       }

       $userMoney[] = $isEveryHave ? ($baseMoney + $RandVal) : $RandVal;

       $leftUserNums--;

   }

 

   //最后一位。考虑:剩余的钱太多或者就一个人

   $userMoney[] = $isEveryHave ? ($baseMoney + $leftMoneys) : $leftMoneys;

 

   echo "总数:" . count($userMoney) . "<br>";

   var_dump($userMoney);

   echo "总值:" . array_sum($userMoney) . "<br>";

 

   return ['code' => 0, 'msg' => "success", 'redbag' => $userMoney];

}

mt_rand(1, 2); ”:mt_rand 包含区间前后边界的,即包含最大值和最小值 ,1和2都会出现。

4、主流的红包算法2:二倍均值算法

正常的算法,定好每个人的最小值,然后就是定下随机区间问题。

二倍均值:实际上就是,用剩下金额的两倍均值为最大区间进行随机,相对正态分布,区间相对合适。但人数越接近总额,分布越均匀。也可以三倍、四倍,倍数越高越随机,正态分布越扁平。

以下是算法示例:

$Moneys = 99 * 10; //单位为分

$userNums = 990;

$isEveryHave = 0; //是否每个人都有

 

$res = doubleMeanRedbag($Moneys, $userNums);

// var_dump($res);

 

//二倍均值算法

function doubleMeanRedbag($Moneys, $userNums, $isEveryHave = 1, $baseMoney = 1)

{

   if ($Moneys <= 0 || $userNums <= 0) {

       return ['code' => -3, 'msg' => '红包金额或拆红包总人数不合法'];

   }

   if ($isEveryHave && $userNums > $Moneys) {

       return ['code' => -4, 'msg' => '红包数量不足'];

   }

 

   //是否每个人都必有

   if ($isEveryHave) {

       $Moneys = $Moneys - ($userNums * $baseMoney); //此时money可能会无法随机到每一个人

   }

 

   $userMoney = [];

   //正式执行二倍均值

   $leftMoneys = $Moneys; //可能 50分钱 分100人

   $leftUserNums = $userNums;

   while ($leftUserNums > 1) { // 考虑:就一个用户瓜分

       // echo "leftMoneys = " . $leftMoneys . " , leftUserNums = " . $leftUserNums . "<br>";

       $RandVal = 0;

       if ($leftMoneys > 0) { //考虑:剩余的钱不够分

           $doubleMeans = ceil($leftMoneys / $leftUserNums * 2);

           $RandVal = mt_rand(0, $doubleMeans);

           $leftMoneys = $leftMoneys - $RandVal;

       }

       $userMoney[] = $isEveryHave ? ($baseMoney + $RandVal) : $RandVal;

       $leftUserNums--;

   }

 

   //最后一位。考虑:剩余的钱太多

   $userMoney[] = $isEveryHave ? ($baseMoney + $leftMoneys) : $leftMoneys;

 

   // echo "总数:" . count($userMoney) . "<br>";

   // var_dump($userMoney);

   // echo "总值:" . array_sum($userMoney) . "<br>";

 

   return ['code' => 0, 'msg' => "success", 'redbag' => $userMoney];

}

5、主流的红包算法3:线段分割算法

线段分割是相对合理的红包算法,但实现逻辑会更复杂一些。

红包金额如果想随机分成 N 份,可以处理为:一个线段,随机选择 N-1 点进行切割。

以下内容将详细讲解线段分割算法。

6、常规线段分割算法

以下是常规线段分割算法示例:

//线段分割算法  -- 有个致命缺陷,随机值碰撞,分割数量越接近总金额,碰撞概率越大 ,所以最好 userNum数量与总金额差的越大越好

function lineSegmentRedbag($Moneys, $userNums, $isEveryHave = 1, $baseMoney = 1)

{

    if ($Moneys <= 0 || $userNums <= 0) {

       return ['code' => -3, 'msg' => '红包金额或拆红包总人数不合法'];

   }

   if ($isEveryHave && $userNums > $Moneys) {

       return ['code' => -4, 'msg' => '红包数量不足'];

   }

 

   $cutPoints = []; //切割点数组

   $pointNums = $userNums - 1; //存放的

   $userMoney = []; //每一个用户该分得的钱

   //正式线段分割,完全随机

   // $j = 0;

   // 当 用户数 和 总金额差距不大时,这种写法效率极差

   while ($pointNums > 0) {

       if ($isEveryHave == 1) {

           $randVal = mt_rand(1, $Moneys - 1); //每个人都有,mt_rand包含区间边界的,即包含最大值 和 最小值 ,1和2都会出现

       } else {

           $randVal = mt_rand(0, $Moneys); //所有用户,全区间随机,保证了公平,所有人概率一致 0~10。如果$Moneys设置-1,导致最后一位必定不为0

       }

 

       if (in_array($randVal, $cutPoints)) { //这边会产生随机碰撞,500个随机需要2500次左右才能覆盖。

           // $j++;

           continue;

       }

       $cutPoints[] = $randVal;

       $pointNums--;

   }

 

   // echo "无效循环次数:" . $j . "<br>";

   // echo "最终切割点数组数量:" . count($cutPoints) . "<br>";

   // var_dump($cutPoints);

   // return;

 

   //根据cutPoint计算每个人所得 同时考虑:就一个人

   $lastVal = 0;

   if (count($cutPoints) > 0) {

       sort($cutPoints);

       foreach ($cutPoints as $RandPoint) {

           $userMoney[] = $RandPoint - $lastVal;

           $lastVal = $RandPoint;

       }

   }

 

   $lastDiff = $Moneys - $lastVal;

   $userMoney[] = $lastDiff;

 

   // echo "总数:" . count($userMoney) . "<br>";

   // echo "总值:" . array_sum($userMoney) . "<br>";

   return ['code' => 0, 'msg' => "success", 'redbag' => $userMoney];

}

7、使用array_rand优化后的线段分割算法

以下是array_rand优化后的线段分割算法示例:

//利用array_rand一次拿出多个随机值时,随机且去重,且随机区间包括首尾。

function lineSegmentOptimize($Moneys, $userNums, $isEveryHave = 1) //$baseMoney = 1默认为1

{

   if ($Moneys <= 0 || $userNums <= 0) {

       return ['code' => -3, 'msg' => '红包金额或拆红包总人数不合法'];

   }

   if ($isEveryHave && $userNums > $Moneys) {

       return ['code' => -4, 'msg' => '红包数量不足'];

   }

 

   $cutPoints = [];

   $userMoney = [];

 

   if ($isEveryHave) {

       $MoneysArr = array_fill(1, $Moneys - 1, 0); //转成数组时,去掉头尾得-1,如果10,则下标是1-9

   } else {

       $MoneysArr = array_fill(0, $Moneys + 1, 0); //转成数组,为了保留头尾得+1,如果10,则下标是0-10,array_rand区间包含首尾

   }

 

   if ($userNums == 1) {

       $userMoney[] = $Moneys;

       return ['code' => 0, 'msg' => "success", 'redbag' => $userMoney];

   }

 

   $cutPoints = array_rand($MoneysArr, $userNums - 1); //多随机、且去重、且区间包含首尾,array_rand第二个值不可为0

   sort($cutPoints);

   $lastVal = 0;

   foreach ($cutPoints as $randPoint) {

       $diff = $randPoint - $lastVal;

       $userMoney[] = $diff;

       $lastVal = $randPoint;

   }

   $lastDiff = $Moneys - $lastVal;

   $userMoney[] = $lastDiff;

 

   // echo "总数:" . count($userMoney) . "<br>";

   // var_dump($userMoney);

   // echo "总值:" . array_sum($userMoney) . "<br>";

   return ['code' => 0, 'msg' => "success", 'redbag' => $userMoney];

}

8、验证array_rand的随机特性

在写线段分割算法时,发现当全区间 mt_rand 后,出现重复切点需要去重,生成非重复的切点。

这里第一时间想到了使用 array_rand,但不确定 array_rand 的随机特性,不知道它的随机特性是否有去重处理。

经过验证:array_rand($arr, 8) 同时随机取多个索引下标时有去重处理,且随机特性很好。

事实证明:array_rand 一次拿出多个随机值时,随机且去重,且随机区间包括首尾。

代码示例如下:

$res = checkRand(10, 10000);

var_dump($res);

function checkRand($range, $num)

{

   $statiArr = array_fill(0, 100, 0);

   $sourceArr = range(0, 99);

   for ($i = 0; $i < 10000; $i++) {

       $indexArr = array_rand($sourceArr, 4); //array_rand随机性可以,且去重性也可以

 

       foreach ($indexArr as $index) { //中途也用array_unique统计,是否单把拿值重复

           $statiArr[$index]++;

       }

   }

   return $statiArr;

}

一次随机取2个时,平均200左右:

1 array(100) { [0]=> int(196) [1]=> int(210) [2]=> int(206) [3]=> int(202)  ,,,,[97]=> int(196) [98]=> int(197) [99]=> int(188) }

一次随机取4个时,平均400左右:

1array(100) { [0]=> int(372) [1]=> int(428) [2]=> int(394) [3]=> int(441) ,,,,, [97]=> int(382) [98]=> int(388) [99]=> int(358) }

一次随机取99个时,平均9900左右:

1array(100) { [0]=> int(9892) [1]=> int(9890) [2]=> int(9913) [3]=> int(9909) ,,,,[97]=> int(9908) [98]=> int(9903) [99]=> int(9908) }

事实证明:array_rand一次拿出多个随机值时,随机且去重。

9、主流的红包算法的耗时和效果对比

最后,我们对全文提到的红包算法的随机性以及计算性价比进行一个整体比较。

以下是测试代码:

function microTime_float()

{

   //$usec 精确到微秒  ,$sec 秒   1秒(second) = 1000毫秒(millisecond) = 1000,000微秒(microsecond)

   list($usec, $sec) = explode(' ', microtime());

   return ((float)$usec + (float)$sec); //float保留小数点后四位

}

 

$starTime = microTime_float(); //0.35529400 1616661516

 

for ($i = 0; $i < 100000; $i++) {

   lineSegmentRedbag($Moneys, $userNums, $isEveryHave);

   // lineSegmentOptimize($Moneys, $userNums, $isEveryHave);

   // doubleMeanRedbag($Moneys, $userNums, $isEveryHave);

}

 

$endTime = microTime_float();

 

$diff = floatval($endTime)  - floatval($starTime);

 

echo "线段分割时间差:" . floatval($diff) . "<br/>"; //时间差:0.33733010292053   //Optimize时间差:0.11269283294678

exit;

 

如上图所示:线段分割算法与二倍均值相比,随机区间更大。

如上图所示:线段分割普通版,随着红包总额与红包人数相近时(即切点接近总值时),随机碰撞率显著升高,性能下降。但经过优化后的线段分割算法,性能比二倍均值还优秀。

10、参考资料

[1] 微信红包随机算法初探

[2] 微信红包算法的分析

[3] 微信红包的架构设计简介

[4] 微信红包的随机算法是怎样实现的?

[5] IM开发宝典:史上最全,微信各种功能参数和逻辑规则资料汇总

[6] 微信本地数据库破解版(含iOS、Android),仅供学习研究 [附件下载]

[7] 全面解密QQ红包技术方案——架构、技术实现等

[8] 解密微信摇一摇红包从0到1的技术演进

[9] 微信摇一摇红包雨背后的技术细节

[10] 微信红包系统是如何应对高并发的

[11] 微信红包系统是如何实现高可用性的

[12] 微信红包系统的存储层架构演进实践

[13] 支付宝红包的海量高并发技术实践

[14] 全面解密微博红包技术方案

[15] 谈谈手Q红包的功能逻辑、容灾、运维、架构等

[16] 手Q客户端针对2020年春节红包的技术实践

[17] 解密微信红包随机算法(含代码实现)

[18] 解密抖音春节红包背后的技术设计与实践

11、更多鹅厂技术文章汇总

 

(本文已同步发布于:http://www.52im.net/thread-4661-1-1.html

目录
相关文章
|
17天前
|
人工智能 Python
【够用就好003】发布人生第二款软件pc微信多开
发布人生第二款软件pc微信多开,在deepseek和豆包的帮助下封装了这个微信多开小工具。
|
18天前
|
运维 监控 JavaScript
内网网管软件中基于 Node.js 的深度优先搜索算法剖析
内网网管软件在企业网络中不可或缺,涵盖设备管理、流量监控和安全防护。本文基于Node.js实现深度优先搜索(DFS)算法,解析其在网络拓扑遍历中的应用。通过DFS,可高效获取内网设备连接关系,助力故障排查与网络规划。代码示例展示了图结构的构建及DFS的具体实现,为内网管理提供技术支持。
38 11
|
1月前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
8天前
|
缓存 监控 算法
基于 C# 网络套接字算法的局域网实时监控技术探究
在数字化办公与网络安全需求增长的背景下,局域网实时监控成为企业管理和安全防护的关键。本文介绍C#网络套接字算法在局域网实时监控中的应用,涵盖套接字创建、绑定监听、连接建立和数据传输等操作,并通过代码示例展示其实现方式。服务端和客户端通过套接字进行屏幕截图等数据的实时传输,保障网络稳定与信息安全。同时,文章探讨了算法的优缺点及优化方向,如异步编程、数据压缩与缓存、错误处理与重传机制,以提升系统性能。
32 2
|
15天前
|
监控 网络协议 算法
基于问题“如何监控局域网内的电脑”——Node.js 的 ARP 扫描算法实现局域网内计算机监控的技术探究
在网络管理与安全领域,监控局域网内计算机至关重要。本文探讨基于Node.js的ARP扫描算法,通过获取IP和MAC地址实现有效监控。使用`arp`库安装(`npm install arp`)并编写代码,可定期扫描并对比设备列表,判断设备上线和下线状态。此技术适用于企业网络管理和家庭网络安全防护,未来有望进一步提升效率与准确性。
32 8
|
12天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
27 3
|
19天前
|
缓存 监控 算法
内网监控管理软件:PHP 语言队列算法揭秘
在数字化办公环境中,内网监控管理软件对企业的稳定运行和信息安全至关重要。本文深入介绍PHP中的队列算法及其在内网监控软件中的应用,包括监控数据收集、任务调度和日志记录等场景,通过代码示例展示其实现方法。队列算法可提高性能、保证数据顺序并实现异步处理,为企业提供高效的安全保障。
23 1
|
1月前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
42 10
|
2月前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
79 18
|
2月前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
60 17

热门文章

最新文章