Java性能优化(八)-多线程调优-线程池大小设置

简介: Java性能优化(八)-多线程调优-线程池大小设置

线程池原理

开始优化之前,我们先来看看线程池的实现原理,有助于你更好地理解后面的内容。

HotSpot VM的线程模型中,Java线程被一对一映射为内核线程。Java在使用线程执行程序时,需要创建一个内核线程;当该Java线程被终止时,这个内核线程也会被回收。因此Java线程的创建与销毁将会消耗一定的计算机资源,从而增加系统的性能开销。

除此之外,大量创建线程同样会给系统带来性能问题,因为内存和CPU资源都将被线程抢占,如果处理不当,就会发生内存溢出、CPU使用率超负荷等问题。

为了解决上述两类问题,Java提供了线程池概念,对于频繁创建线程的业务场景,线程池可以创建固定的线程数量,并且在操作系统底层,轻量级进程将会把这些线程映射到内核。

线程池可以提高线程复用,又可以固定最大线程使用量,防止无限制地创建线程。当程序提交一个任务需要一个线程时,会去线程池中查找是否有空闲的线程,若有,则直接使用线程池中的线程工作,若没有,会去判断当前已创建的线程数量是否超过最大线程数量,如未超过,则创建新线程,如已超过,则进行排队等待或者直接抛出异常。

线程池框架Executor

Java最开始提供了ThreadPool实现了线程池,为了更好地实现用户级的线程调度,更有效地帮助开发人员进行多线程开发,Java提供了一套Executor框架。

这个框架中包括了ScheduledThreadPoolExecutor和ThreadPoolExecutor两个核心线程池。前者是用来定时执行任务,后者是用来执行被提交的任务。鉴于这两个线程池的核心原理是一样的,下面我们就重点看看ThreadPoolExecutor类是如何实现线程池的。

Executors实现了以下四种类型的ThreadPoolExecutor:

Executors利用工厂模式实现的四种线程池,我们在使用的时候需要结合生产环境下的实际场景。不过我不太推荐使用它们,因为选择使用Executors提供的工厂类,将会忽略很多线程池的参数设置,工厂类一旦选择设置默认参数,就很容易导致无法调优参数设置,从而产生性能问题或者资源浪费。

这里我建议你使用ThreadPoolExecutor自我定制一套线程池。进入四种工厂类后,我们可以发现除了newScheduledThreadPool类,其它类均使用了ThreadPoolExecutor类进行实现,你可以通过以下代码简单看下该方法:

    public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
                              int maximumPoolSize,//线程池的最大线程数
                              long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
                              TimeUnit unit,//时间单位
                              BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
                              ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
                              RejectedExecutionHandler handler) //拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务

我们还可以通过下面这张图来了解下线程池中各个参数的相互关系:

通过上图,我们发现线程池有两个线程数的设置,一个为核心线程数,一个为最大线程数。在创建完线程池之后,默认情况下,线程池中并没有任何线程,等到有任务来才创建线程去执行任务。

但有一种情况排除在外,就是调用prestartAllCoreThreads()或者prestartCoreThread()方法的话,可以提前创建等于核心线程数的线程数量,这种方式被称为预热,在抢购系统中就经常被用到。

当创建的线程数等于 corePoolSize 时,提交的任务会被加入到设置的阻塞队列中。当队列满了,会创建线程执行任务,直到线程池中的数量等于maximumPoolSize。

当线程数量已经等于maximumPoolSize时, 新提交的任务无法加入到等待队列,也无法创建非核心线程直接执行,我们又没有为线程池设置拒绝策略,这时线程池就会抛出RejectedExecutionException异常,即线程池拒绝接受这个任务。

当线程池中创建的线程数量超过设置的corePoolSize,在某些线程处理完任务后,如果等待keepAliveTime时间后仍然没有新的任务分配给它,那么这个线程将会被回收。线程池回收线程时,会对所谓的“核心线程”和“非核心线程”一视同仁,直到线程池中线程的数量等于设置的corePoolSize参数,回收过程才会停止。

即使是corePoolSize线程,在一些非核心业务的线程池中,如果长时间地占用线程数量,也可能会影响到核心业务的线程池,这个时候就需要把没有分配任务的线程回收掉。

我们可以通过allowCoreThreadTimeOut设置项要求线程池:将包括“核心线程”在内的,没有任务分配的所有线程,在等待keepAliveTime时间后全部回收掉。`

我们可以通过下面这张图来了解下线程池的线程分配流程:

计算线程数量

了解完线程池的实现原理和框架,我们就可以动手实践优化线程池的设置了。

我们知道,环境具有多变性,设置一个绝对精准的线程数其实是不大可能的,但我们可以通过一些实际操作因素来计算出一个合理的线程数,避免由于线程池设置不合理而导致的性能问题。下面我们就来看看具体的计算方法。

一般多线程执行的任务类型可以分为CPU密集型和I/O密集型,根据不同的任务类型,我们计算线程数的方法也不一样。

CPU密集型任务:这种任务消耗的主要是CPU资源,可以将线程数设置为N(CPU核心数)+1,比CPU核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用CPU的空闲时间。

下面我们用一个例子来验证下这个方法的可行性,通过观察CPU密集型任务在不同线程数下的性能情况就可以得出结果

public class CPUTypeTest implements Runnable {
 
  //整体执行时间,包括在队列中等待的时间
  List<Long> wholeTimeList;
  //真正执行时间
  List<Long> runTimeList;
  
  private long initStartTime = 0;
  
  /**
   * 构造函数
   * @param runTimeList
   * @param wholeTimeList
   */
  public CPUTypeTest(List<Long> runTimeList, List<Long> wholeTimeList) {
    initStartTime = System.currentTimeMillis();
    this.runTimeList = runTimeList;
    this.wholeTimeList = wholeTimeList;
  }
  
  /**
   * 判断素数
   * @param number
   * @return
   */
  public boolean isPrime(final int number) {
    if (number <= 1)
      return false;
 
 
    for (int i = 2; i <= Math.sqrt(number); i++) {
      if (number % i == 0)
        return false;
    }
    return true;
  }
 
  /**
   * 計算素数
   * @param number
   * @return
   */
  public int countPrimes(final int lower, final int upper) {
    int total = 0;
    for (int i = lower; i <= upper; i++) {
      if (isPrime(i))
        total++;
    }
    return total;
  }
 
  public void run() {
    long start = System.currentTimeMillis();
    countPrimes(1, 1000000);
    long end = System.currentTimeMillis();
 
 
    long wholeTime = end - initStartTime;
    long runTime = end - start;
    wholeTimeList.add(wholeTime);
    runTimeList.add(runTime);
    System.out.println("单个线程花费时间:" + (end - start));
  }
}

测试代码在4核 intel i5 CPU机器上的运行时间变化如下:

综上可知:当线程数量太小,同一时间大量请求将被阻塞在线程队列中排队等待执行线程,此时CPU没有得到充分利用;当线程数量太大,被创建的执行线程同时在争取CPU资源,又会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。通过测试可知,4~6个线程数是最合适的。

I/O密集型任务:这种任务应用起来,系统会用大部分的时间来处理I/O交互,而线程在处理I/O的时间段内不会占用CPU来处理,这时就可以将CPU交出给其它线程使用。因此在I/O密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是2N。

这里我们还是通过一个例子来验证下这个公式是否可以标准化:

public class IOTypeTest implements Runnable {
 
  //整体执行时间,包括在队列中等待的时间
  Vector<Long> wholeTimeList;
  //真正执行时间
  Vector<Long> runTimeList;
  
  private long initStartTime = 0;
  
  /**
   * 构造函数
   * @param runTimeList
   * @param wholeTimeList
   */
  public IOTypeTest(Vector<Long> runTimeList, Vector<Long> wholeTimeList) {
    initStartTime = System.currentTimeMillis();
    this.runTimeList = runTimeList;
    this.wholeTimeList = wholeTimeList;
  }
  
  /**
   *IO操作
   * @param number
   * @return
   * @throws IOException 
   */
  public void readAndWrite() throws IOException {
    File sourceFile = new File("D:/test.txt");
        //创建输入流
        BufferedReader input = new BufferedReader(new FileReader(sourceFile));
        //读取源文件,写入到新的文件
        String line = null;
        while((line = input.readLine()) != null){
            //System.out.println(line);
        }
        //关闭输入输出流
        input.close();
  }
 
  public void run() {
    long start = System.currentTimeMillis();
    try {
      readAndWrite();
    } catch (IOException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
    long end = System.currentTimeMillis();
 
 
    long wholeTime = end - initStartTime;
    long runTime = end - start;
    wholeTimeList.add(wholeTime);
    runTimeList.add(runTime);
    System.out.println("单个线程花费时间:" + (end - start));
  }
}

备注:由于测试代码读取2MB大小的文件,涉及到大内存,所以在运行之前,我们需要调整JVM的堆内存空间:-Xms4g -Xmx4g,避免发生频繁的FullGC,影响测试结果。

通过测试结果,我们可以看到每个线程所花费的时间。当线程数量在8时,线程平均执行时间是最佳的,这个线程数量和我们的计算公式所得的结果就差不多。

看完以上两种情况下的线程计算方法,你可能还想说,在平常的应用场景中,我们常常遇不到这两种极端情况,那么碰上一些常规的业务操作,比如,通过一个线程池实现向用户定时推送消息的业务,我们又该如何设置线程池的数量呢?

此时我们可以参考以下公式来计算线程数:

线程数=N(CPU核数)*(1+WT(线程等待时间)/ST(线程时间运行时间))

我们可以通过JDK自带的工具VisualVM来查看WT/ST比例,以下例子是基于运行纯CPU运算的例子,我们可以看到:

这跟我们之前通过CPU密集型的计算公式N+1所得出的结果差不多。

综合来看,我们可以根据自己的业务场景,从“N+1”和“2N”两个公式中选出一个适合的,计算出一个大概的线程数量,之后通过实际压测,逐渐往“增大线程数量”和“减小线程数量”这两个方向调整,然后观察整体的处理时间变化,最终确定一个具体的线程数量。

总结

今天我们主要学习了线程池的实现原理,Java线程的创建和消耗会给系统带来性能开销,因此Java提供了线程池来复用线程,提高程序的并发效率。

Java通过用户线程与内核线程结合的1:1线程模型来实现,Java将线程的调度和管理设置在了用户态,提供了一套Executor框架来帮助开发人员提高效率。Executor框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,可以说Executor框架为并发编程提供了一个完善的架构体系。

在不同的业务场景以及不同配置的部署机器中,线程池的线程数量设置是不一样的。其设置不宜过大,也不宜过小,要根据具体情况,计算出一个大概的数值,再通过实际的性能测试,计算出一个合理的线程数量。

我们要提高线程池的处理能力,一定要先保证一个合理的线程数量,也就是保证CPU处理线程的最大化。在此前提下,我们再增大线程池队列,通过队列将来不及处理的线程缓存起来。在设置缓存队列时,我们要尽量使用一个有界队列,以防因队列过大而导致的内存溢出问题。

相关文章
|
7月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
340 0
|
4月前
|
设计模式 缓存 安全
【JUC】(6)带你了解共享模型之 享元和不可变 模型并初步带你了解并发工具 线程池Pool,文章内还有饥饿问题、设计模式之工作线程的解决于实现
JUC专栏第六篇,本文带你了解两个共享模型:享元和不可变 模型,并初步带你了解并发工具 线程池Pool,文章中还有解决饥饿问题、设计模式之工作线程的实现
297 2
|
9月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
355 0
|
7月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
8月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
596 5
|
8月前
|
监控 搜索推荐 Java
Java 多线程最新实操技术与应用场景全解析:从基础到进阶
本文深入探讨了Java多线程的现代并发编程技术,涵盖Java 8+新特性,如CompletableFuture异步处理、Stream并行流操作,以及Reactive编程中的Reactor框架。通过具体代码示例,讲解了异步任务组合、并行流优化及响应式编程的核心概念(Flux与Mono)。同时对比了同步、CompletableFuture和Reactor三种实现方式的性能,并总结了最佳实践,帮助开发者构建高效、扩展性强的应用。资源地址:[点击下载](https://pan.quark.cn/s/14fcf913bae6)。
485 3
|
9月前
|
算法 Java 调度
Java多线程基础
本文主要讲解多线程相关知识,分为两部分。第一部分涵盖多线程概念(并发与并行、进程与线程)、Java程序运行原理(JVM启动多线程特性)、实现多线程的两种方式(继承Thread类与实现Runnable接口)及其区别。第二部分涉及线程同步(同步锁的应用场景与代码示例)及线程间通信(wait()与notify()方法的使用)。通过多个Demo代码实例,深入浅出地解析多线程的核心知识点,帮助读者掌握其实现与应用技巧。
159 1
|
存储 安全 Java
深入理解Java并发编程:线程安全与锁机制
【5月更文挑战第31天】在Java并发编程中,线程安全和锁机制是两个核心概念。本文将深入探讨这两个概念,包括它们的定义、实现方式以及在实际开发中的应用。通过对线程安全和锁机制的深入理解,可以帮助我们更好地解决并发编程中的问题,提高程序的性能和稳定性。
|
存储 安全 Java
解锁Java并发编程奥秘:深入剖析Synchronized关键字的同步机制与实现原理,让多线程安全如磐石般稳固!
【8月更文挑战第4天】Java并发编程中,Synchronized关键字是确保多线程环境下数据一致性与线程安全的基础机制。它可通过修饰实例方法、静态方法或代码块来控制对共享资源的独占访问。Synchronized基于Java对象头中的监视器锁实现,通过MonitorEnter/MonitorExit指令管理锁的获取与释放。示例展示了如何使用Synchronized修饰方法以实现线程间的同步,避免数据竞争。掌握其原理对编写高效安全的多线程程序极为关键。
329 1
|
安全 Java
Java中的并发编程:理解并发性与线程安全
Java作为一种广泛应用的编程语言,在并发编程方面具有显著的优势和特点。本文将探讨Java中的并发编程概念,重点关注并发性与线程安全,并提供一些实用的技巧和建议,帮助开发人员更好地理解和应用Java中的并发机制。
212 28