[C进阶] 数据在内存中的存储——浮点型篇

简介: [C进阶] 数据在内存中的存储——浮点型篇

一、常见的浮点数:

3.14159

1E5==1.0×105

. . .

浮点数家族包括: floatdoublelong double(C99 标准) 类型

浮点数表示的范围:float.h中定义👇

二、引入

此代码输出的结果是什么?

 int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0; }

输出:

输出这样的结果是不是意料之外呢?从中我们也可以发现一个有趣的现象:当我们以整数存储并以整数打印,或者以浮点数存储并以浮点数打印,输出的结果都在我们意料之内。但是当我们以整数存储却以浮点数打印,或者以浮点数存储却以整数打印,输出的结果都不尽相同。

由此结果分析,我们至少可以得到:浮点数和整数在内存中的存储方式一定存在差异,但是究竟存在什么差异呢?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

三、浮点数存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)S × M × 2E
  • (-1)S表示符号位,当S=0,V为正数;当S=1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2E表示指数位。

例如:

V=-5.5

第一步:按权重转化为2进制数V=-101.1(-1×22+1×20+1×2-1)

第二步:根据国际标准转化形式V=(-1)1 × 1.011 × 22

分解:S=1,M=1.011,E=2

V=9.5

第一步:按权重转化为2进制数V=1001.1(1×23+1×20+1×2-1)

第二步:根据国际标准转化形式V=(-1)0 × 1.0011 × 23

分解:S=0,M=1.0011,E=3

拓展:

不是所有的小数都能在内存中精确保存,由于计算机是以2进制保存数据的,所以对于十进制的小数,计算机只能保存如2-1、2-2、 2-3 ……的数值及它们的加和值。例如0.3由于计算机的特殊储存机制,在计算机中不能以2进制精确保存。

3.1、浮点数储存模型

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

3.2、EEE 754 特别规定

IEEE 754 对有效数字M和指数E,还有一些特别规定:

有效数字M

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。


IEEE754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

指数位E

至于指数E,情况就比较复杂。

1、存入数据时:

首先,存入数据时:E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

2、读取数据时

(1) E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。

比如:float数值0.5(1/2)的IEEE 754表示形式为1.0*2^(-1),即2进制形式为:

0 01111110 00000000000000000000000 读取数据时,E(真实)=E(计算)-127==-1=01111110-127

(2) E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。

(3) E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

四、对“引入”中问题的解释

总结

以上就是浮点数在内存中存储的全部内容了,希望本章内容能够给您带来帮助!😊

同志们,我们下期再见!

1d3574fc38914ae2822931927865bcc8.png

相关文章
|
2天前
|
存储 C语言
数据在内存中的储存
数据在内存中的储存
7 3
|
2天前
|
存储 Java C++
Java虚拟机(JVM)管理内存划分为多个区域:程序计数器记录线程执行位置;虚拟机栈存储线程私有数据
Java虚拟机(JVM)管理内存划分为多个区域:程序计数器记录线程执行位置;虚拟机栈存储线程私有数据,如局部变量和操作数;本地方法栈支持native方法;堆存放所有线程的对象实例,由垃圾回收管理;方法区(在Java 8后变为元空间)存储类信息和常量;运行时常量池是方法区一部分,保存符号引用和常量;直接内存非JVM规范定义,手动管理,通过Buffer类使用。Java 8后,永久代被元空间取代,G1成为默认GC。
10 2
|
5天前
|
存储
数据在内存中的存储(了解数据在内存中的存储规则,看这一篇就够了!)
数据在内存中的存储(了解数据在内存中的存储规则,看这一篇就够了!)
|
1天前
|
存储 C语言
【C语言进阶篇】整数在内存的存储——原码、反码、补码
【C语言进阶篇】整数在内存的存储——原码、反码、补码
|
5天前
|
存储 C语言
C语言----数据在内存中的存储(2)
C语言----数据在内存中的存储
12 0
|
10天前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之 从Kafka读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5天前
|
存储
数据在内存中的存储(2)
数据在内存中的存储(2)
21 5
|
5天前
|
存储 小程序 编译器
数据在内存中的存储(1)
数据在内存中的存储(1)
24 5
|
6天前
|
存储 安全 Java
SpringSecurity6从入门到实战之初始用户如何存储到内存
Spring Security 在 SpringBoot 应用中默认使用 `UserDetailsServiceAutoConfiguration` 类将用户信息存储到内存中。当classpath有`AuthenticationManager`、存在`ObjectPostProcessor`实例且无特定安全bean时,此配置生效。`inMemoryUserDetailsManager()`方法创建内存用户,通过`UserDetails`对象填充`InMemoryUserDetailsManager`的内部map。若要持久化到数据库,需自定义`UserDetailsService`接口实
|
5天前
|
存储 编译器 C语言
数据在内存中的存储
数据在内存中的存储
13 2