[C进阶] 数据在内存中的存储——浮点型篇

简介: [C进阶] 数据在内存中的存储——浮点型篇

一、常见的浮点数:

3.14159

1E5==1.0×105

. . .

浮点数家族包括: floatdoublelong double(C99 标准) 类型

浮点数表示的范围:float.h中定义👇

二、引入

此代码输出的结果是什么?

 int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0; }

输出:

输出这样的结果是不是意料之外呢?从中我们也可以发现一个有趣的现象:当我们以整数存储并以整数打印,或者以浮点数存储并以浮点数打印,输出的结果都在我们意料之内。但是当我们以整数存储却以浮点数打印,或者以浮点数存储却以整数打印,输出的结果都不尽相同。

由此结果分析,我们至少可以得到:浮点数和整数在内存中的存储方式一定存在差异,但是究竟存在什么差异呢?要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

三、浮点数存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)S × M × 2E
  • (-1)S表示符号位,当S=0,V为正数;当S=1,V为负数。
  • M表示有效数字,大于等于1,小于2。
  • 2E表示指数位。

例如:

V=-5.5

第一步:按权重转化为2进制数V=-101.1(-1×22+1×20+1×2-1)

第二步:根据国际标准转化形式V=(-1)1 × 1.011 × 22

分解:S=1,M=1.011,E=2

V=9.5

第一步:按权重转化为2进制数V=1001.1(1×23+1×20+1×2-1)

第二步:根据国际标准转化形式V=(-1)0 × 1.0011 × 23

分解:S=0,M=1.0011,E=3

拓展:

不是所有的小数都能在内存中精确保存,由于计算机是以2进制保存数据的,所以对于十进制的小数,计算机只能保存如2-1、2-2、 2-3 ……的数值及它们的加和值。例如0.3由于计算机的特殊储存机制,在计算机中不能以2进制精确保存。

3.1、浮点数储存模型

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

3.2、EEE 754 特别规定

IEEE 754 对有效数字M和指数E,还有一些特别规定:

有效数字M

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。


IEEE754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

指数位E

至于指数E,情况就比较复杂。

1、存入数据时:

首先,存入数据时:E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

2、读取数据时

(1) E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。

比如:float数值0.5(1/2)的IEEE 754表示形式为1.0*2^(-1),即2进制形式为:

0 01111110 00000000000000000000000 读取数据时,E(真实)=E(计算)-127==-1=01111110-127

(2) E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。

(3) E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

四、对“引入”中问题的解释

总结

以上就是浮点数在内存中存储的全部内容了,希望本章内容能够给您带来帮助!😊

同志们,我们下期再见!

1d3574fc38914ae2822931927865bcc8.png

相关文章
|
6天前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
28 11
|
29天前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
29天前
|
存储 C语言
数据在内存中的存储方式
本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。
60 1
|
1月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
4月前
|
存储 分布式计算 Hadoop
HadoopCPU、内存、存储限制
【7月更文挑战第13天】
293 14
|
3月前
|
存储 编译器 C语言
【C语言篇】数据在内存中的存储(超详细)
浮点数就采⽤下⾯的规则表⽰,即指数E的真实值加上127(或1023),再将有效数字M去掉整数部分的1。
383 0
|
1月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
42 4
|
1月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
56 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
|
1月前
|
存储 机器学习/深度学习 人工智能
数据在内存中的存储
数据在内存中的存储