操作系统(1)----操作系统的运行机制

简介: 操作系统(1)----操作系统的运行机制

1.CPU指令

CPU的指令类型有特权指令与非特权指令。应用程序只能使用“非特权指令”,如:加法指令,减法指令等。操作系统内核作为“管理者”,有时会让CPU执行一些“特权指令”,如:内存清零指令。这些指令影响重大只允许“管理者”一即操作系统内核来使用。

CPU设计和生产的时候就划分了特权指令和非特权指令,因此CPU执行一条指令前就能判断出其类型,CPU是怎么判断出指令类型的呢?


CPU有两种状态,“内核态”和“用户态”CPU 中有一个寄存器叫程序状态字寄存器(PSW),其中有个二进制位,1表示“内核态”,0示“用户态”


处于内核态(核心态,管态)时,说明此时正在运行的是内核程序,此时可以执行特权指令


处于用户态(目态)时,i说明此时正在运行的是应用程序,此时只能执行非特权指令

2.内核态、初始态的切换

内核态--->用户态: 执行一条特权指令--修改PSW的标志位为“用户态”,这个动作意味着操作系统将主动让出CPU使用权

用户态--->内核态:由“中断”引发,硬件自动完成变态过程,触发中断信号意味着操作系统将强行夺回CPU的使用权,这种情况会发生在非法使用特权指令,或者操作系统需要开展某项管理工作,即操作系统需要介入,都需要触发中断信号。

举个例子:


(1)开机时,需要加载操作系统,进行操作系统的初始化工作,初始化工作就是由操作系统中某些内核程序完成的,所以CPU此时处在"内核态"


(2)开机完成后,用户可以启动某个应用程序。


(3)操作系统内核程序在合适的时候主动让出CPU,让该应用程序上CPU运行。操作系统内核在让出CPU之前,会用一条特权指令把 PSW 的标志位设置为“用户态”


(4)应用程序运行在“用户态”


(5)若此时植入一条特权指令,这个非法事件会引发一个中断信号,但CPU检查PSW的状态为“0”,处于“用户态”,CPU检测到中断信号后,会立即变为“核心态”,并停止运行当前的应用程序(拒绝执行这一植入的特权指令),转而运行处理中断信号的内核程序


(6)操作系统会对引发中断的事件进行处理,处理完了再把CPU使用权交给别的应用程序


3.中断机制的基本原理

不同的中断信号,需要用不同的中断处理程序来处理。当CPU检测到中断信号后,会根据中断信号的类型去查询“中断向量表”,以此来找到相应的中断处理程序在内存中的存放位置。中断处理程序一定是内核程序,需要运行在“内核态”。

4.中断的类型

中断的类型由内中断与外中断。内中断(异常,例外)与当前执行的指令有关,中断信号来源于CPU内部。


内中断:

内中断,也称为异常,有以下几种类型:


陷阱、陷入:由陷入指令引发,是应用程序故意引发的


故障:由错误条件引起的,可能被内核程序修复。内核程序修复故障后会把 CPU使用权还给应用程序,让它继续执行下去。如: 缺页故障。


终止:由致命错误引起,内核程序无法修复该错误,因此一般不再将CPU使用权还给引发终止的应用程序,而是直接终止该应用程序。如:整数除0、非法使用特权指令。

内中断的例子:

1.由非法植入的特权指令引起的中断(终止)

2.除法指令中发现除数为0,也会引起内中断(终止)。

3.有时候应用程序想请求操作系统内核的服务,此时会执行一条特殊的指令--陷入指令,该指令会引发一个内部中断信号。("系统调用"就是通过陷入指令完成的)


注:陷入指令是一条特殊的指令,不是特权指令


所以若当前执行的指令是非法的,则会引发一个中断信号。


注:CPU在执行指令时会检查是否有异常发生

这里补充一下系统调用:


操作系统作为用户和计算机硬件之间的接口,需要向上提供一些简单易用的服务。主要包括命令接口和程序接口。其中,程序接口由一组系统调用组成。


“系统调用”是操作系统提供给应用程序(程序员/编程人员)使用的接口,可以理解为一种可供应用程序调用的特殊函数,应用程序可以通过系统调用来请求获得操作系统内核的服务


系统调用的作用:

操作系统内核会对共享资源进行统一的管理,并向上提供“系统调用”,用户进程想要使用打印机这种共享资源,只能通过系统调用向操作系统内核发出请求。内核会对各个请求进行协调处理。


应用程序通过系统调用请求操作系统的服务。而系统中的各种共享资源都由操作系统内核统一掌管,因此凡是与共享资源有关的操作(如存储分配、I/O操作、文件管理等),都必须通过系统调用的方式向操作系统内核提出服务请求,由操作系统内核代为完成。这样可以保证系统的稳定性和安全性,防止用户进行非法操作。

高级语言的库函数,在底层也会使用到系统调用,所以系统调用是比高级语言的库函数更为底层的接口:

注:不是所有的库函数都需要涉及系统调用

不涉及系统调用的库函:如的“取绝对值”的函数

涉及系统调用的库函数:如“创建一个新文件”的函数

系统调用的过程:

1.应用系统首先会执行传参指令,传参指令会将参数传递到寄存器中,传递多少参数取决于系统调用需要多少参数,操作系统会根据这些参数判断是哪种类型的服务。

2.参数传递完毕后,应用程序会执行陷入指令,触发内中断信号,转入相应的中断处理程序一即系统调用的入口程序

3.接下来CPU就会响应中断,进行系统调用入口程序的处理,此时CPU的状态由"用户态"转为"内核态",该程序会根据寄存器中的参数判断用户需要哪种系统调用服务。


4.接下来CPU就会转入响应的系统调用处理程序进行处理。


总结来讲就是:


传递系统调用参数--->执行陷入指令(用户态)--->执行相应的内核请求程序处理系统调用(核心态)

--->返口应用程序

注意:

1.陷入指令是在用户态执行的,执行陷入指令之后立即引发一个内中断,使CPU进入核心态

2.发出系统调用请求是在用户态,而对系统调用的相应处理在核心态下进行

外中断:

外中断(中断)与当前执行的指令无关,中断信号来源于CPU外部。

1.时钟中断---由时钟部件发来的中断信号。时钟部件每隔一个时间片(如 50ms) 会给CPU发送一个时钟中断信号,通过这个时钟中断信号就可以实现多道程序并发运行了。

假设系统中想要并发执行两个应用程序,应用程序1执行自己的应用程序,直到50ms,时钟部件会向CPU发送中断信号,CPU收到中断信号会将“用户态”转变为“内核态”,在内核态下执行内核程序,处理中断信号,并且决定让另一个应用程序上CPU运行。所以切换应用程序2上CPU运行。这样两个应用程序就可以实现交替运行。


2.I/O中断一一由输入/输出设备发来的中断信号。


当输入输出任务完成时,向CPU发送中断信号。CPU收到中断信号,就会处理I/O中断中的内核程序。


注:CPU在每一条指令执行结束后,都会理性检查是否有外中断信号。


目录
相关文章
|
4天前
|
监控 搜索推荐 开发工具
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
2025年1月9日更新Windows操作系统个人使用-禁用掉一下一些不必要的服务-关闭占用资源的进程-禁用服务提升系统运行速度-让电脑不再卡顿-优雅草央千澈-长期更新
|
1月前
|
机器学习/深度学习 人工智能 物联网
操作系统的心脏——深入理解内核机制
在本文中,我们揭开操作系统内核的神秘面纱,探索其作为计算机系统核心的重要性。通过详细分析内核的基本功能、类型以及它如何管理硬件资源和软件进程,我们将了解内核是如何成为现代计算不可或缺的基础。此外,我们还会探讨内核设计的挑战和未来趋势,为读者提供一个全面的内核知识框架。
|
1月前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
2月前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。
|
2月前
|
安全 Linux 数据安全/隐私保护
深入探索Linux操作系统的多用户管理机制
【10月更文挑战第21天】 本文将详细解析Linux操作系统中的多用户管理机制,包括用户账户的创建与管理、权限控制以及用户组的概念和应用。通过具体实例和命令操作,帮助读者理解并掌握Linux在多用户环境下如何实现有效的资源分配和安全管理。
|
3月前
|
存储 资源调度 算法
操作系统的心脏:深入理解内核架构与机制####
【10月更文挑战第16天】 本文旨在揭开操作系统最神秘的面纱——内核,通过剖析其架构设计与关键机制,引领读者一窥究竟。在这篇探索之旅中,我们将深入浅出地讨论内核的基本构成、进程管理的智慧、内存分配的策略,以及那至关重要的系统调用接口,揭示它们是如何协同工作,支撑起现代计算机系统的高效运行。这既是一次技术的深潜,也是对“看不见的手”调控数字世界的深刻理解。 ####
72 3
|
2月前
|
缓存 调度
操作系统的心脏:深入理解内核机制
【10月更文挑战第26天】 在数字化时代,操作系统是计算机系统不可或缺的核心。本文旨在揭示操作系统内核的神秘面纱,探讨其工作原理和重要性。通过深入浅出的语言,我们将一窥究竟,了解内核如何协调硬件与软件,确保计算机系统的稳定运行。
|
4月前
|
移动开发 Android开发 数据安全/隐私保护
移动应用与系统的技术演进:从开发到操作系统的全景解析随着智能手机和平板电脑的普及,移动应用(App)已成为人们日常生活中不可或缺的一部分。无论是社交、娱乐、购物还是办公,移动应用都扮演着重要的角色。而支撑这些应用运行的,正是功能强大且复杂的移动操作系统。本文将深入探讨移动应用的开发过程及其背后的操作系统机制,揭示这一领域的技术演进。
本文旨在提供关于移动应用与系统技术的全面概述,涵盖移动应用的开发生命周期、主要移动操作系统的特点以及它们之间的竞争关系。我们将探讨如何高效地开发移动应用,并分析iOS和Android两大主流操作系统的技术优势与局限。同时,本文还将讨论跨平台解决方案的兴起及其对移动开发领域的影响。通过这篇技术性文章,读者将获得对移动应用开发及操作系统深层理解的钥匙。
118 12
|
3月前
|
消息中间件 存储 网络协议
操作系统的心脏:深入理解进程间通信(IPC)机制
在现代计算机系统中,操作系统扮演着至关重要的角色,而进程间通信(IPC)作为操作系统的核心功能之一,极大地影响着系统的性能和稳定性。本文将通过浅显易懂的语言,详细探讨进程间通信的基本原理、主要类型及其实际应用,旨在为读者提供一个清晰且全面的理解和认识。 ##
224 1
|
4月前
|
算法 调度 UED
探索操作系统的心脏——进程管理机制
本文将深入探讨操作系统中至关重要的部分——进程管理机制。我们将从基本概念入手,逐步解析进程的定义、状态及其在操作系统中的角色。随后,我们会详细讨论进程调度算法,包括先来先服务、短作业优先、时间片轮转和优先级调度等,分析它们的优势与应用情景。最后,通过实例展示这些算法在实际系统运作中的运用,帮助读者更好地理解进程管理的核心原理。