Netflix展示大数据分析基础架构

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

Netflix资深软件工程师Tom Gianos和Netflix大数据计算工程经理Dan Weeks在2016年度QCon旧金山活动中介绍了Netflix的大数据策略和分析基础架构,此外还概括介绍了他们的数据规模、S3数据仓库,以及他们的大数据大数据联合编排系统(Federated orchestration system)Genie。

为了介绍具体的需求,Weeks解释称,“规模”是Netflix在大数据领域面临的最大挑战。该公司在全球范围内有超过8600万会员,每天通过流播的方式播放总时长超过1.25亿小时的内容。这样的规模导致他们的数据仓库容量已经超过60PB。

尽管很多人可能觉得视频流播数据是Netflix数据分析工作的主要数据源,但Weeks解释说,他们分析的主要是其他类型的数据,例如公司内部各种微服务和营销活动产生的事件,尤其是Weeks专门提到:

Netflix是一家彻头彻尾的数据驱动型公司。我们喜欢根据真凭实据作出不同的决策。对于整个平台的某些变更,如果无法切实证明有助于改善用户体验,我们宁愿不进行这样的变更。

Weeks列举了一个此类数据类型的用例:A/B测试。数据科学家可以分析用户的交互,进而决定向用户永久推送哪些类型的功能。

Weeks还概括介绍了Netflix的数据流程架构。他们共使用了两个数据流,一个用于事件数据,一个用于维度数据。事件数据通过他们的Kafka数据管道传递,维度数据则使用开源工具Aegisthus从他们的Cassandra群集拉取。最终,所有类型的数据汇总至S3。

虽然传统数据仓库可以使用HDFS,但Weeks提到使用S3可以获得其他一些优势。例如99.99%可用性、版本控制,以及将计算负载从存储系统中剥离的能力。最后一点非常关键,尽管数据未能本地保存会导致延迟增高,但通过这样的剥离可以很轻松地在无须移动数据的前提下对计算群集进行缩放或执行升级任务。

在数据仓库方面,为了获得所需数据,Weeks介绍说他们使用了一种名为Metacat的元数据系统。具体来说,该系统提供了有关确定如何处理数据所需的信息,此外还可以从中了解数据具体是什么,保存在哪里。由于这是一种联合(Federated)系统,因此可在Hive、RDS、S3等存储的基础之上运行的技术。

Weeks还介绍说,数据本身存储为Parquet文件格式。这是一种列式存储格式,借此可获得更高压缩率。Parquet文件还可以存储额外的元数据,例如有关列最大/最小长度及其体积的信息。这样诸如计数或跳过之类的操作就可以非常快速地执行完毕。

有关Parquet调优地详细信息已由Netflix资深软件工程师Ryan Blue公开发布至这里。

在Weeks从底层介绍他们的大数据环境后,Gianos从较高层面进行了介绍。他介绍的内容主要围绕Genie,这是一种联合编排引擎,可用于管理诸如Hadoop、Pig、Hive等不同类型的大数据作业。

为了介绍他们针对Genie的具体需求,Gianos用一个简单的用例作为例子:少量用户同时访问同一个群集。虽然这种情况非常易于管理,但随着组织规模的增大,可能会面临不同的情况,导致对客户端资源和群集资源的需求激增,进而导致部署变得愈加复杂。这就导致了导致数据科学家经常遇到的问题,例如作业速度变慢,数据处理库过时等,这也使得系统管理员难以轻松地对这些问题作出响应。

按照Gianos的介绍,Genie可以帮助系统管理员执行群集的启动和管理、库文件的安装等任务,这一切都不会影响到最终用户。从用户的角度来看,用户可以通过这样的抽象直接访问群集,而无须考虑如何连接到群集,也不需要了解群集上到底运行了什么。

在群集的更新方面,Gianos介绍说,只要成功通过测试,只需要添加对应的标签即可顺利迁移至新群集。Genie可以对所有工作进行编排,并让原本的作业继续在老群集上运行,同时新提交的作业可以在新群集上运行。这样即可实现不停机更新。

Genios还介绍说,Genie的标签机制可以应用于负载均衡,为此只需跨越群集对标签进行复制即可拆分负载。从客户端的角度来看,这一过程是完全透明的。

另外Genios也介绍了Genie的二进制更新机制。新的二进制文件可以移动到一个集中的下载位置,随后在下一次调用时自动替换老的文件。

Genios从数据科学家的角度演示了Genie的完整工作流。基本上,他们只需要将作业提交至Genie,其中可包含群集标签等元数据,以及自己希望使用的大数据处理引擎。随后Genie可以查找最适合运行该作业的群集。Genie的界面会通过用户反馈告诉用户作业的运行进度。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
434 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
3天前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
21天前
|
SQL 运维 BI
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
|
7天前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
46 3
|
6天前
|
存储 SQL 分布式计算
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
|
2月前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
61 9
|
2月前
|
测试技术 双11 开发者
一文分析架构思维之建模思维
软件里的要素不是凭空出现的,都是源于实际的业务。本文从软件设计本源到建模案例系统的介绍了作者对于建模的思维和思考。
|
3月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
302 15
|
3月前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
998 8
|
3月前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。

热门文章

最新文章