美国银行将关闭一些数据中心

简介:

日前据悉,美国银行计划在今年第二季度关闭三个数据中心,而将其工作负载由在传统IT基础设施运行转变为软件定义基础设施的方法。

作为所谓的“绿色工程”项目的一部分,该银行已将20,000个工作负载移至其SDI云端,美国银行基础设施执行官David Reilly表示,其每个工作负载的成本可以降至采用亚马逊,Rackspace和微软Azure公司所提供的服务成本。

  美国银行

美国银行银行估计,自2012年以来,已经IT基础架构预算方面减少了10亿美元。

Reilly表示,美国银行关闭数据中心的做法是按自己的需求实施的,而不是为了满足数据中心的高峰需求。

同时,美国银行将解聘一些高收入的数据中心管理人员,并已经警告投资者,将花费4.25亿美元来支付数据中心工作人员遣散费和关闭费用。



本文转自d1net(转载)

相关文章
|
人工智能 算法 安全
银行数据中心正让位于公有云
该公司最近发布了一项由《经济学人(EIU)》智库委托进行的银行业趋势调查报告。此项统计覆盖2020年2月至3月,就银行业务数字化方面的主题对全球305位银行业高管进行了调查。
|
运维 安全 大数据
|
7月前
|
存储 传感器 监控
探索现代数据中心的冷却技术革新
【4月更文挑战第23天】 在信息技术迅猛发展的今天,数据中心作为计算和存储的核心枢纽,其稳定性和效率至关重要。然而,随着处理能力的增强,设备发热量急剧上升,有效的冷却方案成为确保数据中心持续运行的关键因素。本文将深入分析当前数据中心面临的热管理挑战,并探讨几种前沿的冷却技术,包括液冷系统、热管技术和环境自适应控制策略。通过比较不同技术的优缺点,我们旨在为数据中心管理者提供实用的冷却解决方案参考。
|
4月前
|
机器学习/深度学习 存储 监控
利用机器学习技术优化数据中心能效
【7月更文挑战第36天】在数据中心管理和运营中,能源效率已成为关键性能指标之一。随着能源成本的不断上升以及环境保护意识的增强,开发智能化、自动化的解决方案以降低能耗和提高能源利用率变得尤为重要。本文探讨了如何应用机器学习技术对数据中心的能源消耗进行建模、预测和优化,提出了一个基于机器学习的框架来动态调整资源分配和工作负载管理,以达到节能的目的。通过实验验证,该框架能够有效减少数据中心的能耗,同时保持服务质量。
|
7月前
|
存储 大数据 数据处理
探索现代数据中心的冷却技术
【5月更文挑战第25天】 在信息技术迅猛发展的今天,数据中心作为其核心基础设施之一,承载了巨大的数据处理需求。随着服务器密度的增加和计算能力的提升,数据中心的能耗问题尤其是冷却系统的能效问题日益凸显。本文将深入探讨现代数据中心所采用的高效冷却技术,包括液冷解决方案、热管技术和环境自适应控制等,旨在为数据中心的绿色节能提供参考和启示。
|
7月前
|
人工智能 监控 物联网
探索现代数据中心的冷却技术
【5月更文挑战第27天】 在信息技术迅猛发展的今天,数据中心作为信息处理的核心设施,其稳定性和效率至关重要。而随着计算能力的提升,数据中心面临的一个重大挑战便是散热问题。本文将深入探讨现代数据中心冷却技术的进展,包括传统的空气冷却系统、水冷系统,以及新兴的相变材料和热管技术。通过对不同冷却方式的效率、成本及实施难度的分析,旨在为读者提供一份关于数据中心散热优化的参考指南。