机器学习中的特征工程:提升模型性能的关键步骤

简介: 【5月更文挑战第3天】特征工程是提升机器学习模型性能的关键,涉及从原始数据中提取、选择和创造特征。它能提高模型预测准确率,简化模型复杂度,增强泛化能力。常用技术包括特征选择(Filter、Wrapper、Embedded方法)、特征构造(组合、多项式、文本特征提取)和特征变换(标准化、归一化、离散化)。通过优化特征工程,可找到最佳特征组合,提升模型性能。

在机器学习的实践中,特征工程(Feature Engineering)是构建高性能模型的关键步骤之一。特征工程涉及到从原始数据中提取、选择和创造特征,以更好地表示数据的内在规律和结构,从而提高机器学习模型的预测能力。本文将介绍特征工程的基本概念、重要性以及常用的特征工程技术。

一、特征工程的基本概念

特征工程是机器学习项目中数据预处理的一部分,它旨在通过一系列技术手段,从原始数据中提取出对模型训练有用的特征。这些特征可以是数值型、类别型、文本型或图像型等,它们应该能够准确反映数据的内在规律和结构,并帮助模型更好地学习和预测。

二、特征工程的重要性

特征工程在机器学习中具有举足轻重的地位。一个好的特征工程能够显著提高模型的性能,使模型在训练集和测试集上都能取得更好的效果。以下是特征工程的重要性所在:

  1. 提高模型性能:通过特征工程,我们可以提取出与预测目标高度相关的特征,降低模型对噪声和冗余数据的敏感性,从而提高模型的预测准确率。
  2. 简化模型复杂度:特征工程能够去除数据中的冗余特征和无关特征,减少模型的复杂度,使模型更加轻便和易于训练。
  3. 提高模型的泛化能力:通过特征工程,我们可以使模型更好地学习到数据的内在规律和结构,从而提高模型的泛化能力,使其在面对新数据时也能保持较好的性能。

三、常用的特征工程技术

1. 特征选择

特征选择是指从原始数据中选择出一部分最有代表性的特征。这些特征应该与预测目标高度相关,同时具有较低的冗余度。常用的特征选择方法有:

  • Filter方法:通过统计指标(如信息增益、卡方检验等)对特征进行排序,选择排序靠前的特征。
  • Wrapper方法:将特征选择过程嵌入到模型训练过程中,通过模型的性能来评估特征的好坏。
  • Embedded方法:在模型训练过程中自动进行特征选择,如决策树中的特征重要性评分、神经网络中的注意力机制等。

2. 特征构造

特征构造是指根据原始数据的特点和预测目标,创造出新的特征。这些新特征可能能够更好地反映数据的内在规律和结构,从而提高模型的性能。常用的特征构造方法有:

  • 组合特征:将多个原始特征进行组合,形成新的特征。例如,在推荐系统中,可以将用户的年龄和性别进行组合,形成“年轻男性”、“中年女性”等新的特征。
  • 多项式特征:通过多项式运算将原始特征进行扩展,形成新的特征。例如,可以将两个特征x和y进行多项式扩展,得到新的特征x^2、y^2、xy等。
  • 文本特征提取:对于文本型数据,可以使用TF-IDF、词嵌入等方法提取出文本的向量表示,作为新的特征。

3. 特征变换

特征变换是指对原始特征进行某种数学变换,以改变其分布或性质,使其更适合于模型训练。常用的特征变换方法有:

  • 标准化:将特征值减去均值后除以标准差,使其服从标准正态分布。这有助于消除不同特征之间的量纲差异和数值范围差异。
  • 归一化:将特征值缩放到一定的范围内(如[0,1]或[-1,1]),使其具有相同的数值范围。这有助于避免某些特征在模型训练过程中占据过大的权重。
  • 离散化:将连续型特征转换为离散型特征。这有助于处理具有非线性关系的特征,并减少模型的复杂度。

四、总结

特征工程是机器学习中不可或缺的一部分,它通过从原始数据中提取、选择和构造特征,帮助模型更好地学习和预测。在进行特征工程时,我们需要结合具体的数据特点和预测目标,选择合适的特征选择、构造和变换方法。通过不断尝试和优化,我们可以找到最适合的特征组合,从而提高模型的性能和泛化能力。

相关文章
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
94 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
265 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
93 20
|
30天前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
81 6
|
3月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
2月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
72 12
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
192 6