N-Gram模型是什么?

简介: N-Gram模型是什么?

N-Gram模型是1948年诞生的


N-Gram模型是一种用于自然语言处理的统计语言模型。它用于分析和预测文本中的语言结构,特别是用于文本生成和文本分类任务。


N-Gram模型基于一个简单的假设:文本中的下一个词(或字符)出现的概率仅仅依赖于前面的N个词(或字符),而与其他部分无关。这里的N通常被称为“N-Gram”的N,它表示前面的上下文大小。例如,对于2-Gram模型(也称为bigram模型),它假设下一个词的出现只与前面的一个词相关;对于3-Gram模型(trigram模型),它假设下一个词的出现只与前面的两个词相关,依此类推。


N-Gram模型的应用包括:


文本生成:根据已有的文本数据,使用N-Gram模型生成类似风格和结构的新文本。

语言建模:用于识别和纠正拼写错误,或者自动完成用户输入的文本。

机器翻译:用于将一种语言的文本翻译成另一种语言。

文本分类:用于将文本数据分类到不同的类别,如垃圾邮件过滤、情感分析等。


N-Gram模型的主要优点是简单易懂,计算效率高,但它也有一些缺点,例如无法捕捉长距离的依赖关系和上下文信息不足。因此,在自然语言处理中,通常会结合其他更复杂的模型来提高性能。


相关文章
|
1月前
|
存储 PyTorch 算法框架/工具
利用PyTorch的三元组损失Hard Triplet Loss进行嵌入模型微调
本文介绍了如何使用 PyTorch 和三元组边缘损失(Triplet Margin Loss)微调嵌入模型,详细讲解了实现细节和代码示例。
44 4
|
存储 机器学习/深度学习 算法
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
语义检索系统排序模块:基于ERNIE-Gram的Pair-wise和基于RocketQA的CrossEncoder训练单塔模型
|
4月前
HanLP — HMM隐马尔可夫模型 -- 训练--归一化,计算概率
HanLP — HMM隐马尔可夫模型 -- 训练--归一化,计算概率
53 0
|
人工智能 自然语言处理 PyTorch
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践
|
机器学习/深度学习 自然语言处理 索引
瞎聊机器学习——从词袋模型到word2vec
瞎聊机器学习——从词袋模型到word2vec
|
算法 数据挖掘 Linux
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
138 0
【文本分类】采用同义词的改进TF-IDF权重的文本分类
|
机器学习/深度学习 自然语言处理 算法
【文本分类】基于改进TF-IDF特征的中文文本分类系统
【文本分类】基于改进TF-IDF特征的中文文本分类系统
261 0
【文本分类】基于改进TF-IDF特征的中文文本分类系统
|
机器学习/深度学习 文字识别 算法
深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测
深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测
|
机器学习/深度学习 人工智能 自然语言处理
NLP教程(2) - GloVe及词向量的训练与评估
本文介绍GloVe词向量、词向量内部与外部评估方法、类比任务中的词向量训练超参数影响、相关度评估任务中词向量与人工表现差异、基于上下文处理一词多义问题和窗分类。
1528 1
NLP教程(2) - GloVe及词向量的训练与评估
|
机器学习/深度学习 存储 人工智能
NLP教程(1) - 词向量、SVD分解与Word2Vec
本文介绍自然语言处理(NLP)的概念及其面临的问题,进而介绍词向量和其构建方法(包括基于共现矩阵降维和Word2Vec)。
1389 1
NLP教程(1)  -  词向量、SVD分解与Word2Vec