【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例-2

简介: 【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例

【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例-1

https://developer.aliyun.com/article/1488249


自回归滞后模型

像AR(p)模型一样,仅凭其自身的滞后对宏观经济变量进行回归可能是一种限制性很大的方法。通常,更合适的假设是还有其他因素。通过包含因变量的滞后值以及其他(即,外生)变量的同期和滞后值的模型来实现这种想法。同样,这些外生变量应该是稳定的。对于内生变量yt和外生变量xt例如_自回归分布滞后_或ADL,模型可以写成

yt=a1yt−1+b0xt+b1xt−1+et.

这种ADL模型的预测性能可能会比简单的AR模型更好。但是,如果外生变量也依赖于内生变量的滞后值怎么办?这意味着xt也是内生的,还有进一步的空间可以改善我们的预测。

向量自回归模型

因此,如上所述,VAR模型可以重写为一系列单独的ADL模型。实际上,可以通过分别估计每个方程来估计VAR模型。

标准VAR模型的协方差矩阵是_对称的_,即,对角线右上角的元素(“上三角”)将对角线左下角的元素(“下三角”)镜像。这反映了这样一种想法,即内生变量之间的关系仅反映相关性,并且不允许做出因果关系的陈述,因为在每个方向上的影响都是相同的。

在所谓的_结构化_ VAR(SVAR)模型的背景下分析了同时因果关系,或更确切地说,是变量之间的结构关系,该模型对协方差矩阵施加了限制 。

在本文中,我考虑VAR(2)过程。

此示例的人工样本是在R中生成的

set.seed(123) # 由于可复制性的考虑,重置随机数发生器
# 生成样本
t <- 200 # 时间序列观察数
k <- 2 # 内生变量数
p <- 2 # 滞后阶数
# 生成系数矩阵
A.1 <- matrix(c(-.3, .6, -.4, .5), k) # 滞后系数矩阵1
A.2 <- matrix(c(-.1, -.2, .1, .05), k) # 滞后系数2
A <- cbind(A.1, A.2) # 系数矩阵
# 生成序列
series <- matrix(0, k, t + 2*p) # 带有0的原始序列
for (i in (p + 1):(t + 2*p)){ # 生成e ~ N(0,0.5)的序列
  series[, i] <- A.1%*%series[, i-1] + A.2%*%series[, i-2] + rnorm(k, 0, .5)
}
series <- ts(t(series[, -(1:p)])) # 转换为时间序列格式
names <- c("V1", "V2") # 重命名变量
plot.ts(series) # 绘制序列

image.png

估算值

简单VAR模型的参数和协方差矩阵的估计很简单。

为了估计VAR模型,加载并指定数据(y)和 模型。

比较

VAR分析中的一个中心问题是找到滞后的阶数,以产生最佳结果。模型比较通常基于信息标准,例如AIC,BIC或HQ。通常,由于是小样本预测,AIC优于其他标准。但是,BIC和HQ在大型样本中效果很好 。

可以计算标准信息标准以找到最佳模型。在此示例中,我们使用AIC:

通过查看,summary我们可以看到AIC建议使用2的阶数。

summary(var.aic)


## VAR Estimation Results:
## ========================= 
## Endogenous variables: Series.1, Series.2 
## Deterministic variables: none 
## Sample size: 200 
## Log Likelihood: -266.065 
## Roots of the characteristic polynomial:
## 0.6611 0.6611 0.4473 0.03778
## Call:
## VAR(y = series, type = "none", lag.max = 5, ic = "AIC")
## 
## 
## Estimation results for equation Series.1: 
## ========================================= 
## Series.1 = Series.1.l1 + Series.2.l1 + Series.1.l2 + Series.2.l2 
## 
##             Estimate Std. Error t value Pr(>|t|)    
## Series.1.l1 -0.19750    0.06894  -2.865  0.00463 ** 
## Series.2.l1 -0.32015    0.06601  -4.850 2.51e-06 ***
## Series.1.l2 -0.23210    0.07586  -3.060  0.00252 ** 
## Series.2.l2  0.04687    0.06478   0.724  0.47018    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.4638 on 196 degrees of freedom
## Multiple R-Squared: 0.2791,  Adjusted R-squared: 0.2644 
## F-statistic: 18.97 on 4 and 196 DF,  p-value: 3.351e-13 
## 
## 
## Estimation results for equation Series.2: 
## ========================================= 
## Series.2 = Series.1.l1 + Series.2.l1 + Series.1.l2 + Series.2.l2 
## 
##             Estimate Std. Error t value Pr(>|t|)    
## Series.1.l1  0.67381    0.07314   9.213  < 2e-16 ***
## Series.2.l1  0.34136    0.07004   4.874 2.25e-06 ***
## Series.1.l2 -0.18430    0.08048  -2.290   0.0231 *  
## Series.2.l2  0.06903    0.06873   1.004   0.3164    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Residual standard error: 0.4921 on 196 degrees of freedom
## Multiple R-Squared: 0.3574,  Adjusted R-squared: 0.3443 
## F-statistic: 27.26 on 4 and 196 DF,  p-value: < 2.2e-16 
## 
## 
## 
## Covariance matrix of residuals:
##          Series.1 Series.2
## Series.1  0.21417 -0.03116
## Series.2 -0.03116  0.24154
## 
## Correlation matrix of residuals:
##          Series.1 Series.2
## Series.1    1.000   -0.137
## Series.2   -0.137    1.000`
仔细观察结果,我们可以将真实值 与模型的参数估计值进行比较:

真实值

A
##      [,1] [,2] [,3] [,4]
## [1,] -0.3 -0.4 -0.1 0.10
## [2,]  0.6  0.5 -0.2 0.05
# Extract coefficients, standard errors etc. from the object
# produced by the VAR function
est_coefs <- coef(var.aic)
# 仅提取两个因变量的系数,并将它们组合为一个矩阵
# 输出四舍五入的估计值
round(est_coefs, 2)
##      Series.1.l1 Series.2.l1 Series.1.l2 Series.2.l2
## [1,]       -0.20       -0.32       -0.23        0.05
## [2,]        0.67        0.34       -0.18        0.07

所有估计值都有正确的符号,并且相对接近其真实值。

脉冲响应

一旦我们确定了最终的VAR模型,就必须解释其估计的参数值。由于VAR模型中的所有变量都相互依赖,因此单个参数值仅提供 有限信息。为了更好地了解模型的动态行为,使用了脉冲响应(IR)。可以绘制因变量的轨迹,产生在许多宏观论文中都可以找到的那些波浪曲线。

在下面的示例中,我们想知道受到冲击后序列2的行为。指定了我们想要脉冲响应的模型和变量后,我们将时间范围设置n.ahead为20。该图给出了序列2的响应。

# 计算脉冲响应
# 绘制脉冲响应
plot(ir.1)

image.png

请注意,_正交_选项很重要,因为它说明了变量之间的关系。在我们的示例中,我们已经知道不存在这样的关系,因为真正的方差-协方差矩阵(或简称协方差矩阵)在非对角元素中是对角为零的对角线。但是,由于具有200个观测值的有限时间序列数据限制了参数估计的精度,因此协方差矩阵的非对角元素具有正值,这意味着 非零同时效应。为了在IR中排除这种情况,我们设置了ortho = FALSE。结果是,脉冲响应在周期0中从零开始。也可以尝试另一种方法并进行设置ortho = TRUE,那么绘图从零开始。

要了解这一点,还可以计算并绘制_累积_脉冲响应函数,以了解 总体长期影响:

# 计算脉冲响应
# 绘图
plot(ir.2)

image.png

我们看到,尽管序列2对序列1中的 反应在某些时期是负面的,但总体效果却是显着正面。

相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
3月前
|
UED
评估数据集CGoDial问题之主流生成伪OOD样本的问题如何解决
评估数据集CGoDial问题之主流生成伪OOD样本的问题如何解决
|
6月前
|
存储 数据采集 数据可视化
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言估计时变VAR模型时间序列的实证研究分析案例
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
|
6月前
|
数据挖掘 C语言
R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
R语言极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析
|
6月前
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
|
6月前
|
vr&ar
【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例
【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例
|
6月前
|
vr&ar
【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例-1
【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例
|
6月前
|
数据可视化
Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化
Eviews用向量自回归模型VAR实证分析公路交通通车里程与经济发展GDP协整关系时间序列数据和脉冲响应可视化
|
6月前
|
机器学习/深度学习 算法 Python
R语言VaR市场风险计算方法与回测、用LOGIT逻辑回归、PROBIT模型信用风险与分类模型
R语言VaR市场风险计算方法与回测、用LOGIT逻辑回归、PROBIT模型信用风险与分类模型