ChatGLM3 源码解析(三)

简介: ChatGLM3 源码解析(三)

RotaryEmbedding

# 旋转位置嵌入,应用于每一层 Q 和 K
class RotaryEmbedding(nn.Module):
    def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
        super().__init__()
        # 除法项定义
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
        self.register_buffer("inv_freq", inv_freq)
        # d,嵌入维度
        self.dim = dim
        # (未知)
        self.original_impl = original_impl
        # 旋转比例
        self.rope_ratio = rope_ratio
    def forward_impl(
            self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
    ):
        """Enhanced Transformer with Rotary Position Embedding.
        Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
        transformers/rope/__init__.py. MIT License:
        https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
        """
        # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
        base = base * self.rope_ratio
        # 嵌入空间中每个二维子空间的旋转角度 
        theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
        # 序列 ID,0 ~ SeqLen - 1 的一维数组
        seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
        # 二者的每个元素相乘,得到序列角度
        # 尺寸为 [SeqLen, HeadSize // 2]
        # idx_theta[i, d] == i * theta[d]
        idx_theta = torch.outer(seq_idx, theta).float()
        # 计算序列角度的余弦和正弦,并按最后一维堆叠
        # 尺寸为 [SeqLen, HeadSize // 2, 2]
        # cache[i, d] 是第 i 个向量第 d 个子空间的余弦和正弦值
        cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
        # this is to mimic the behaviour of complex32, else we will get different results
        if dtype in (torch.float16, torch.bfloat16, torch.int8):
            cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
        return cache
    def forward(self, max_seq_len, offset=0):
        return self.forward_impl(
            max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
        )
@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
    # 输入:[SeqLen, BatchSize, NHead, HeadSize]
    # rope:[MaxSeqLen, HeadSize // 2, 2]
    sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
    # HeadSize
    rot_dim = rope_cache.shape[-2] * 2
    # 如果 X 嵌入维度超过了 HeadSize,将其分为两部分,只处理 HeadSize 之内的部分
    x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
    # rope 截断到 SeqLen 长度
    rope_cache = rope_cache[:sq]
    # 拆分 X 的最后一维,使元素两个一组,[SeqLen, BatchSize, NHead, HeadSize // 2, 2]
    xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
    # 再 rope 第二维插两个 1,[SeqLen, 1, 1, HeadSize // 2, 2]
    rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
    # 执行旋转编码
    # xshaped[..., 0]:二维子空间 x0
    # xshaped[..., 1]:二位子空间 y0
    # xshaped[..., 0]:cosθ
    # rope_cache[..., 1]:sinθ
    # x = cosθ * x0 - sinθ * y0
    # y = sinθ * x0 + cosθ * y0
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
        ],
        -1,
    )
    # 变形为 [SeqLen, BatchSize, NHead, HeadSize]
    x_out2 = x_out2.flatten(3)
    # 将 HeadSize 之外的部分合并回来
    return torch.cat((x_out2, x_pass), dim=-1)

Embedding

class Embedding(torch.nn.Module):
    """Language model embeddings."""
    def __init__(self, config: ChatGLMConfig, device=None):
        super(Embedding, self).__init__()
        # HidSize:隐藏状态每个向量的维度
        self.hidden_size = config.hidden_size
        # 嵌入层,用于将单词ID转成向量,尺寸 [VocabSize, HidSize]
        self.word_embeddings = nn.Embedding(
            config.padded_vocab_size,
            self.hidden_size,
            dtype=config.torch_dtype,
            device=device
        )
        # 控制残差连接是否是 FP32
        self.fp32_residual_connection = config.fp32_residual_connection
    def forward(self, input_ids):
        # 输入是单词 ID,[BatchSize, SeqLen]
        # 将单词 ID 传入嵌入层,得到单词向量,作为初始隐藏状态
        # [BatchSize, SeqLen, HidSize]
        words_embeddings = self.word_embeddings(input_ids)
        embeddings = words_embeddings
        # 交换初始隐藏状态前两维,[SeqLen, BatchSize, HidSize]
        embeddings = embeddings.transpose(0, 1).contiguous()
        # 如果设置了 FP32,将其转换为 FP32
        if self.fp32_residual_connection:
            embeddings = embeddings.float()
        return embeddings

ChatGLMForConditionalGeneration

class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
    def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
        super().__init__(config)
        # MaxSeqLen
        self.max_sequence_length = config.max_length
        # 前面的 TFM
        self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
        self.config = config
        self.quantized = False
        # 如果指定了量化位数则执行量化
        if self.config.quantization_bit:
            self.quantize(self.config.quantization_bit, empty_init=True)
    def forward(
            self,
            input_ids: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            labels: Optional[torch.Tensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            return_last_logit: Optional[bool] = False,
    ):
        # 初始化`use_cache`,指定是否返回 KVCache
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        # 初始化`return_dict`,指定返回字典还是元组
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # 单词 ID:[BatchSize, SeqLen]
        # 将单词 ID 等东西传入 TFM
        transformer_outputs = self.transformer(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        # 得到最终隐藏状态,[SeqLen, BatchSize, HidSize]
        hidden_states = transformer_outputs[0]
        # 如果只返回最后一个 logit, 只取隐藏状态的最后一个
        if return_last_logit:
            hidden_states = hidden_states[-1:]
        # 将隐藏状态传入输出层得到 logits,[SeqLen, BatchSize, VocabSize]
        lm_logits = self.transformer.output_layer(hidden_states)
        # 交换前两维,[BatchSize, SeqLen, HidSize]
        lm_logits = lm_logits.transpose(0, 1).contiguous()
        loss = None
        # 如果指定了标签,计算损失
        if labels is not None:
            lm_logits = lm_logits.to(torch.float32)
            # 截断 logits 的最后一个元素和标签的第一个元素
            # 因为需要让单词 #1 的 logits 拟合标签 #2
            # logits:    A B C D E (F)
            # 标签:   (A) B C D E F
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # 计算交叉熵,并忽略标签 -100
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            # logits 变形为 [BatchSize * (DeqLen - 1), VocabSize]
            # 标签变形为 [BatchSize * (DeqLen - 1)]
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
            '''
            这段逻辑类似于:
            mask = shift_labels != -100
            shift_labels = shift_labels[mask]
            shift_logits = shift_logits[mask]
            shift_onehot = torch.nn.functional.one_hot(shift_labels, shift_logits.size(-1))
            shift_probs = torch.softmax(shift_logits, -1)
            loss = - (shift_onehot * torch.log(shift_probs)).sum(-1).mean()
            '''
            lm_logits = lm_logits.to(hidden_states.dtype)
            loss = loss.to(hidden_states.dtype)
        # 如果指定不返回字典,将损失,logits 和其他东西打包成元组返回
        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output
        # 否则返回字典
        return CausalLMOutputWithPast(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


相关文章
|
3月前
ChatGLM2 源码解析:`GLMTransformer`
ChatGLM2 源码解析:`GLMTransformer`
182 0
|
3月前
ChatGLM2 源码解析:`ChatGLMModel`
ChatGLM2 源码解析:`ChatGLMModel`
180 0
|
3月前
ChatGLM2 源码解析:`GLMBlock`
ChatGLM2 源码解析:`GLMBlock`
136 0
|
2月前
|
文字识别 并行计算 语音技术
ModelScope问题之下载模型文件报错如何解决
ModelScope模型报错是指在使用ModelScope平台进行模型训练或部署时遇到的错误和问题;本合集将收集ModelScope模型报错的常见情况和排查方法,帮助用户快速定位问题并采取有效措施。
225 3
|
3月前
ChatGLM2 源码解析:`MLP`
ChatGLM2 源码解析:`MLP`
40 0
|
3月前
ChatGLM2 源码解析:`ChatGLMForConditionalGeneration.forward`
ChatGLM2 源码解析:`ChatGLMForConditionalGeneration.forward`
169 0
|
5月前
|
人工智能 数据挖掘 API
AutoGen完整教程和加载本地LLM示例
Autogen是一个卓越的人工智能系统,它可以创建多个人工智能代理,这些代理能够协作完成任务,包括自动生成代码,并有效地执行任务。
356 0
|
3月前
ChatGLM2 源码解析:`ChatGLMTokenizer`
ChatGLM2 源码解析:`ChatGLMTokenizer`
70 0
|
13天前
ChatGLM3 源码解析(五)
ChatGLM3 源码解析(五)
21 0
|
13天前
ChatGLM3 源码解析(一)
ChatGLM3 源码解析(一)
22 0

热门文章

最新文章