8卡环境微调Grok-1实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是魔搭ModelScope开源社区推出的一套完整的轻量级训练推理工具,基于PyTorch的轻量级、开箱即用的模型微调、推理框架,让AI爱好者用自己的消费级显卡就能玩转大模型和AIGC。

本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列:

SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是魔搭ModelScope开源社区推出的一套完整的轻量级训练推理工具基于PyTorch的轻量级、开箱即用的模型微调、推理框架,让AI爱好者用自己的消费级显卡就能玩转大模型和AIGC。

Grok-1自开源以来,因作为高达314B参数的基础模型,且采用Rust+JAX框架构建,不适配transformers生态,导致使用其进行微调训练成本较高。近期,Colossal-AI及时推出了解决方案,提供了更方便易用的 Python+PyTorch+HuggingFace Grok-1——grok-1-pytorch,目前模型已在HuggingFace、ModelScope上开源。目前,魔搭SWIFT模型训练框架已经率先支持对grok-1-pytorch 在8卡环境下的微调,训练脚本已完全开源。




环境准备

git clone https://github.com/modelscope/swift.git
cd swift
pip install -e .[llm]



微调


实验环境

  • GPU:8*A100 80G
  • 镜像:ModelScope官方镜像1.13.1版本
  • peft:0.10.0


数据集准备

Grok是base模型,因此我们使用了问题生成数据集DuReader作为训练集。该数据集约15000条,max-length设置为512,训练数据约10000条(平均长度305±92 tokens)。


模型准备

Grok模型我们使用了ColossalAI提供的版本,其中我们额外准备了符合transformers标准的tokenizer


模型链接:


训练

由于Grok模型过大,device_map和deepspeed zero3非offload均无法运行训练,因此本次实验我们使用了LoRA+deepspeed zero3 offload模式运行训练。训练完整脚本如下:

# cd examples/pytorch/llm first
nproc_per_node=8

PYTHONPATH=../../.. \
torchrun \
    --nproc_per_node=$nproc_per_node \
    --master_port 29500 \
    llm_sft.py \
    --model_type grok-1 \
    --sft_type lora \
    --tuner_backend swift \
    --dtype bf16 \
    --output_dir output \
    --ddp_backend nccl \
    --dataset dureader-robust-zh \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 512 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_dtype bf16 \
    --lora_target_modules DEFAULT \
    --gradient_checkpointing true \
    --batch_size 2 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --deepspeed_config_path scripts/grok-1/lora_ddp_ds/zero3.json \
    --save_only_model true \


改脚本需要一个zero3.json文件,完整的训练文件可以在这里找到。

下面是训练过程的一些benchmark:

指标

显存占用

8*21G

训练速度

45s/it

总iter数

340(10000(dataset_length)/16(gradient_accumulation)/2(batch_size))

企业微信截图_1712801643313.png


由于显存占用不到24G,理论上可以在RTX3090/A10环境中运行训练。

企业微信截图_17128016295445.png

企业微信截图_17128016216251.png


训练时长约4小时。



推理


SWIFT框架目前并不支持deepspeed推理,因此我们仍然使用transformers的device_map进行推理支持。但由于模型过大,因此部分layers会被offload到CPU上,并影响LoRA加载使推理出错,因此我们针对peft的实现进行了一定patch(原Linear在meta设备上时不迁移LoRA,并在运行时动态迁移weights)。


推理脚本如下:

# cd examples/pytorch/llm first
PYTHONPATH=../../.. \
python llm_infer.py \
    --ckpt_dir output/grok-1/vx-xxx-xxx/checkpoint-xxx \
    --dtype bf16 \
    --load_dataset_config true \
    --max_new_tokens 64 \
    --do_sample true \
    --dtype bf16 \
    --eval_human false \
    --merge_lora false \


推理结果:

[PROMPT]Task: Question Generation
Context: 我个人感觉是吕颂贤版,剧情和原著差别不大,虽然TVB演员颜值和风光没有大陆的好。但是香港特区人口和地域的限制,只能注重在演员的演技方面发挥很出色,楼主看过大陆排《笑傲江湖》吧!在台词上表现的很生硬没有香港的注重神色配台词,比如杜燕歌把吕颂贤表情和性格几乎和原著差别不大。武打几乎沿用徐克和程小东动作的风格很注重实际技巧,没有大陆版的在武打场面依靠电脑特效表现的太夸张了。李亚鹏版的武打动作和导演还是香港的元彬,大陆毕竟还是在武侠剧起步的比较晚,主要是还是靠明星大腕压阵而香港却是恰恰相反。
Answer: 吕颂贤版
Question:[OUTPUT]笑傲江湖哪个版本好看</s>

[LABELS]笑傲江湖哪个版本好看
--------------------------------------------------
[PROMPT]Task: Question Generation
Context: 这位朋友你好,女性出现妊娠反应一般是从6-12周左右,也就是女性怀孕1个多月就会开始出现反应,第3个月的时候,妊辰反应基本结束。而大部分女性怀孕初期都会出现恶心、呕吐的感觉,这些症状都是因人而异的,除非恶心、呕吐的非常厉害,才需要就医,否则这些都是刚怀孕的的正常症状。1-3个月的时候可以观察一下自己的皮肤,一般女性怀孕初期可能会产生皮肤色素沉淀或是腹壁产生妊娠纹,特别是在怀孕的后期更加明显。还有很多女性怀孕初期会出现疲倦、嗜睡的情况。怀孕三个月的时候,膀胱会受到日益胀大的子宫的压迫,容量会变小,所以怀孕期间也会有尿频的现象出现。月经停止也是刚怀孕最容易出现的症状,只要是平时月经正常的女性,在性行为后超过正常经期两周,就有可能是怀孕了。如果你想判断自己是否怀孕,可以看看自己有没有这些反应。当然这也只是多数人的怀孕表现,也有部分女性怀孕表现并不完全是这样,如果你无法确定自己是否怀孕,最好去医院检查一下。
Answer: 6-12周
Question:[OUTPUT]怀孕几个月开始反应</s>

[LABELS]怀孕多久会有反应
--------------------------------------------------



点击直达开源地址:

https://github.com/modelscope/swift/blob/main/docs/source/LLM/Grok%E8%AE%AD%E7%BB%83%E5%92%8C%E6%8E%A8%E7%90%86.md


相关文章
|
传感器 API 开发工具
OpenCV视频读写模块(videoio)
OpenCV视频读写模块(videoio)
OpenCV视频读写模块(videoio)
|
物联网 Shell Swift
NPU推理&微调大模型实战
本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列
|
消息中间件 存储 运维
|
数据采集 算法 物联网
【算法精讲系列】阿里云百炼SFT微调实践分享
本内容为您提供了百炼平台SFT微调的实践案例,帮助您方便并快速借助模型微调定制化您自己的专属模型。
3342 14
|
12月前
|
人工智能 并行计算 监控
深入剖析 Qwen2.5 - 32B 模型在 VLLM 上的单机三卡部署与运行
本文深入探讨了Qwen2.5 - 32B模型在VLLM框架上的部署过程,从模型下载、启动命令、资源占用分析到GPU资源分配及CUDA图应用,详述了大模型运行的挑战与优化策略,强调了硬件资源规划与技术调优的重要性。
6935 2
|
机器学习/深度学习 自然语言处理
完全使用自生成数据实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%
【10月更文挑战第27天】Google DeepMind 研究人员开发了 SCoRe 方法,利用多回合在线强化学习显著提升大型语言模型(LLM)的自我纠正能力。该方法分为两个阶段:第一阶段通过强化学习减少行为崩溃,第二阶段使用奖励塑造优化两次尝试的性能。实验结果显示,SCoRe 在数学和编程任务上分别提升了 4.4% 和 12.2% 的自我纠正性能。
321 3
|
11月前
|
人工智能 PyTorch 算法框架/工具
【AI系统】昇腾推理引擎 MindIE
本文详细介绍华为昇腾推理引擎 MindIE,涵盖其基本介绍、关键功能特性及三大组件:MindIE-Service、MindIE-Torch 和 MindIE-RT。文章深入探讨了各组件在服务化部署、大模型推理和推理运行时方面的功能和应用场景,旨在帮助读者全面了解 MindIE 如何支持 AI 业务的高效运行和模型的快速部署。
1028 0
|
Kubernetes Cloud Native 云计算
云原生时代的技术演进:Kubernetes与微服务架构的完美融合
随着云计算技术的飞速发展,云原生概念逐渐深入人心。本文将深入探讨云原生技术的核心——Kubernetes,以及它如何与微服务架构相结合,共同推动现代软件架构的创新与发展。文章不仅剖析了Kubernetes的基本工作原理,还通过实际案例展示了其在微服务部署和管理中的应用,为读者提供了一条清晰的云原生技术应用路径。
267 2
|
监控 关系型数据库 MySQL
MySQL高可用MHA
MySQL高可用管理工具(MHA,Master High Availability)是一个用于自动管理MySQL主从复制的工具,它可以提供高可用性和自动故障转移。MHA由原版的MHA工具和MHA Manager组成,它们协同工作以实现自动主从切换和监控。
798 0
|
Kubernetes 数据库连接 数据库
实时计算 Flink版产品使用问题之如何进行离线同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

热门文章

最新文章