Transformer模型中前置Norm与后置Norm的区别

简介: Transformer模型中前置Norm与后置Norm的区别

前言

在讨论Transformer模型和Vision Transformer (ViT)模型中归一化层位置的不同,我们首先需要理解归一化层(Normalization)在这些模型中的作用。归一化层主要用于调整输入数据的尺度,以减少梯度消失或梯度爆炸的问题,从而提高模型的稳定性和训练效率。

原始的transformer模型把norm归一化层放在了注意力机制的后面,但是vision transformer模型把norm归一化层放到了注意力机制的前面。

在Transformer模型中,归一化(Normalization)层的位置在注意力前后有所不同。这种差异主要源于对模型训练和稳定性的考虑。

             

不同位置的作用

在原始的transformer模型中,归一化层被放置在注意力机制之后。这种设计有助于提高模型的训练效率和稳定性。在自注意力机制中,输入序列通过与权重矩阵相乘来计算注意力分数,这可能导致梯度消失或梯度爆炸的问题。将归一化层放在注意力机制之后,可以有效缓解这些问题,因为归一化层可以调整输入的尺度。使得梯度更加稳定。此外,由于注意力机制本身是一种非线性的处理方式,把归一化层放在它之后,可以帮助保持输入数据分布的稳定性,这对于模型收敛和有效训练来说是至关重要的。

在Vision transformer(ViT)模型中,归一化层被放置在注意力机制之前。这种设计选择是为了更好地适应图像数据的特性。在ViT模型中,输入的图像数据首先经过卷积层进行初步的特征提取,然后这些特征通过归一化层和线性层进行进一步处理,以便于计算注意力分数。鉴于图像数据通常具有较大的尺度变化,将归一化层置于注意力机制之前可以更有效地调整输入特征的尺度。这样的设计使得模型能够更好地适应和处理图像数据,从而在视觉任务中表现出更优异的性能。


总结

  1. 在原始的Transformer模型中,归一化层放在注意力机制之后:这样的安排有助于模型更好地保留和学习输入数据之间的关系,同时也有利于保持模型训练的稳定性和高效性。
  2. 在Vision Transformer模型中,归一化层放在注意力机制之前:这种设计有助于针对图像数据调整输入特征的尺度,使模型在处理图像数据时更加高效和精确。
目录
相关文章
|
自然语言处理 算法 数据挖掘
自蒸馏:一种简单高效的优化方式
背景知识蒸馏(knowledge distillation)指的是将预训练好的教师模型的知识通过蒸馏的方式迁移至学生模型,一般来说,教师模型会比学生模型网络容量更大,模型结构更复杂。对于学生而言,主要增益信息来自于更强的模型产出的带有更多可信信息的soft_label。例如下右图中,两个“2”对应的hard_label都是一样的,即0-9分类中,仅“2”类别对应概率为1.0,而soft_label
自蒸馏:一种简单高效的优化方式
|
人工智能
强大的AI绘画网站Draft,重点是免费!不需要爬楼梯!
强大的AI绘画网站Draft,重点是免费!不需要爬楼梯!
1630 0
|
机器学习/深度学习 数据采集 人工智能
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
1290 0
|
传感器 机器学习/深度学习 编解码
一文尽览 | 基于点云、多模态的3D目标检测算法综述!(Point/Voxel/Point-Voxel)(下)
目前3D目标检测领域方案主要包括基于单目、双目、激光雷达点云、多模态数据融合等方式,本文主要介绍基于激光雷达雷达点云、多模态数据的相关算法,下面展开讨论下~
一文尽览 | 基于点云、多模态的3D目标检测算法综述!(Point/Voxel/Point-Voxel)(下)
|
8月前
|
机器学习/深度学习
YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
YOLOv11改进策略【损失函数篇】| 替换激活函数为Mish、PReLU、Hardswish、LeakyReLU、ReLU6
1961 4
|
5月前
|
弹性计算 自然语言处理 Ubuntu
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
|
机器学习/深度学习 人工智能 自然语言处理
2024通义语音AI技术图景,大模型引领AI再进化
2024通义语音AI技术图景,大模型引领AI再进化
|
机器学习/深度学习 人工智能 自然语言处理
首家!瓴羊完成信通院“基于大模型的智能客服”评估!
首家!瓴羊完成信通院“基于大模型的智能客服”评估!
555 1
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
18417 0