进程间通信之共享内存及其shm函数的使用【Linux】

简介: 进程间通信之共享内存及其shm函数的使用【Linux】


什么是共享内存

  共享内存区是最快的IPC(Inter-Process Communication,进程间通信)形式。一旦这样的内存映射到共享它的进程的地址空间,这些进程间数据传递不再涉及到内核,换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据.

  匿名管道和命名管道都需要通过系统调用接口来实现进程间通信,因为管道属于文件,属于内核中的一种特殊数据结构,由OSweihu,所以只能使用系统调用。而共享内存存在堆栈之间,可以直接读写。双方进程若要进行通信,直接进行内存级的读写即可。

从下图可以更加直观的看到在内核照中的运行方式:

  • 共享内存的提供者是操作系统。
  • 共享内存缺乏访问控制,用户(进程)双方都不会影响对方,甚至不知道对方的存在,容易造成接受的数据是不完整的。
  • 共享内存 = 共享内存块 + 对应的共享内存的内核数据结构

共享内存的内核数据结构

如何实现共享内存

共享内存函数

shmget函数

功能:用来创建共享内存

原型: int shmget(key_t key, size_t size, int shmflg);

参数:

key:这个共享内存段名字

size:共享内存大小

shmflg:由九个权限标志构成,它们的用法和创建文件时使用的mode模式标志是一样的

返回值:成功返回一个非负整数,即该共享内存段的标识码;失败返回-1

  参数key要保证在系统中的唯一性,key值相同,就是同一块共享内存,保证key的唯一性可以使用ftok函数实现:

ftok函数

所需要的头文件:

#include <sys/types.h>

#include <sys/ipc.h>

函数原型:

key_t ftok(const char *pathname, int proj_id);

参数:

pathname:指定的文件,此文件必须存在且可存取

proj_id:计划代号(project ID),可以在[0, 255]中随机取一个数字。

函数返回值

  • 成功:返回key_t值(即IPC 键值)
  • 出错:-1,错误原因存于error中
    ftok函数把从pathname导出的信息与id的低序8位组合成一个整数IPC键(也就是shmget函数中需要的key值)。

  注意:如果在使用ftok的这段时间里,pathname指向的文件或者目录被删除而且又重新创建,ftok是能够成功返回的,但是由于inode可能不同了,返回值也就不同于所希望的值,由于key值相同,使用同一块共享内存,这时候就可能会导致key值不同,双方无法共享一块内存,所以这个pathname一定要是一个不会被修改的文件路径。


  对于shmget的第二个参数size,代表这个共享内存的大小,最好是页(PAGE:4096byte)的整数倍,(OS和磁盘进行I/O操作的基本单位也是4096byte),如果设置为4097byte,虽然只是多了一个字节,但是系统底层可能会创建4096 * 2的空间,即使这样,也只能使用自己申请的大小(4097byte),不能使用4096*2的空间。

第三个参数shmflg:

  • 该参数用于确定共享内存属性。
  • 使用上为:标志位 | 内存权限
  • 标志位参数有两种:IPC_CREAT、IPC_EXCL
  • 使用TPC_CREAT | 0666(内存权限):创建共享内存若底层存在,就获取,并返回,若不存在,就新建,并返回。
  • 使用TPC_CREAT | IPC_EXCL | 0666(内存权限):创建共享内存若底层存在,则出错返回。若不存在,则新建,并返回。所以返回的一定是一个全新的shm.

shmat函数

功能:将共享内存段连接到进程地址空间

原型: void *shmat(int shmid, const void *shmaddr, int shmflg);

参数:

shmid: 共享内存标识

shmaddr:指定连接的地址

shmflg:它的两个可能取值是SHM_RND和SHM_RDONLY

返回值:成功返回一个指针,指向共享内存第一个节;失败返回-1

使用这个函数建立物理内存和虚拟内存的映射。

shmaddr设置为nullptr表示让内核自己确定位置。

shmflg设置为0为默认方式。

使用shmat函数可以简单的这样:

char* shmaddr = (char*)shmat(shmid, nullptr, 0);

  • shmaddrNULL,核心自动选择一个地址
  • shmaddr不为NULLshmflgSHM_RND标记,则以shmaddr为连接地址。
  • shmaddr不为NULLshmflg设置了SHM_RND标记,则连接的地址会自动向下调整为SHMLBA的整数倍。公式:shmaddr -(shmaddr % SHMLBA)
  • shmflg=SHM_RDONLY,表示连接操作用来只读共享内存

shmdt函数

功能:将共享内存段与当前进程脱离

原型:int shmdt(const void *shmaddr);

参数: shmaddr: 由shmat所返回的指针

返回值:成功返回0;失败返回-1

注意:将共享内存段与当前进程脱离不等于删除共享内存段功能

shmctl函数

功能:用于控制共享内存

原型:int shmctl(int shmid, int cmd, struct shmid_ds *buf);

参数:

shmid:由shmget返回的共享内存标识码

cmd:将要采取的动作(有三个可取值)

buf:指向一个保存着共享内存的模式状态和访问权限的数据结构

返回值:成功返回0;失败返回-1

 cmd的三个命令:

命令 说明
IPC_STAT 把shmid_ds结构中的数据设置为共享内存的当前关联值
IPC_SET 在进程有足够权限的前提下,把共享内存的当前关联值设置为shmid_ds数据结构中给出的值
IPC_RMID 删除共享内存段

shmctl常用IPC_RMID,用于删除共享内存空间。

代码实现

//server.cpp
// 由server再共享内存里面读取信息
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <error.h>
#include <string.h>
#include <unistd.h>
#include <string>
#include <cstdlib>
const int SIZE = 4094;
int main()
{
    key_t key = ftok(".", 113);
    if (key < 0)
    {
        perror("ftok");
        exit(1);
    }
    int shmid = shmget(key, SIZE, IPC_CREAT | 0666);
    if (shmid < 0)
    {
        perror("shmget");
        exit(2);
    }
    char *addr = (char *)shmat(shmid, NULL, 0);
    int i = 0;
    while (i < 20)
    {
        i++;
        printf("client# %s\n", addr);
        fflush(stdout);
        memset(addr, 0, sizeof(addr)); // 每次写入都清空,保证共享内存中没有上一次的数据残留。
        sleep(1);
    }
    shmdt(addr);
    shmctl(shmid, IPC_RMID, NULL);
    return 0;
}
// client.cpp
// 由client再共享内存里面发送信息
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <error.h>
#include <string.h>
#include <unistd.h>
#include <cstdlib>
const int SIZE = 4094;
int main()
{
    key_t key = ftok(".", 113);
    if (key < 0)
    {
        perror("ftok");
        exit(1);
    }
    int shmid = shmget(key, SIZE, IPC_CREAT | 0666);
    if (shmid < 0)
    {
        perror("shmget");
        exit(2);
    }
    char *addr = (char *)shmat(shmid, NULL, 0);
    int i = 0;
    while (i < 15)
    {
        fgets(addr, 100, stdin);
        fflush(stdin);
        sleep(1);
        i++;
    }
    shmdt(addr);
    return 0;
}
// makeflie
.PHONY:all
all:server client
server:server.cpp
  g++ -o $@ $^
client:client.cpp
  g++ -o $@ $^
.PHONY:clean
clean:
  rm -f server client

  上面的代码是实现一个由客户端进行在终端上进行写入信息到共享内存,服务端从共享内存读出到终端打印到屏幕上的一个过程。


    😄 创作不易,你的点赞和关注都是对我莫大的鼓励,再次感谢您的观看😄

  • List item
相关文章
|
10月前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
11月前
|
消息中间件 存储 网络协议
从零开始掌握进程间通信:管道、信号、消息队列、共享内存大揭秘
本文详细介绍了进程间通信(IPC)的六种主要方式:管道、信号、消息队列、共享内存、信号量和套接字。每种方式都有其特点和适用场景,如管道适用于父子进程间的通信,消息队列能传递结构化数据,共享内存提供高速数据交换,信号量用于同步控制,套接字支持跨网络通信。通过对比和分析,帮助读者理解并选择合适的IPC机制,以提高系统性能和可靠性。
1394 14
|
8月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
295 67
|
7月前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
210 16
|
7月前
|
Unix Linux
对于Linux的进程概念以及进程状态的理解和解析
现在,我们已经了解了Linux进程的基础知识和进程状态的理解了。这就像我们理解了城市中行人的行走和行为模式!希望这个形象的例子能帮助我们更好地理解这个重要的概念,并在实际应用中发挥作用。
141 20
|
6月前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
128 0
|
6月前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
192 0
|
6月前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
132 0
|
6月前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
173 0
|
10月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
435 34

热门文章

最新文章