问题:
2个问题:
1. 内核都采用单位参数,可以是像素或米,文档指出:
内核的测量系统(“像素”或“米”)。如果内核以米为单位指定,则当缩放级别更改时它将调整大小。
我认为这是不正确的,如果内核以像素为单位指定,它会随着金字塔级别的变化而改变缩放级别吗?您可以在上面的代码中比较圆内核 (m) 与圆内核 (px) 来确认此行为。如果放大第四个桥,您会发现在查看像素时解析细节的能力有所提高,而米细节保持不变。
2. 当内核使用米单位时,在更高的金字塔级别上是如何计算的?例如,它是在本机计算然后缩小的吗?我尝试通过在像素单元内核上使用手动重投影来测试这一点,但是它的运行速度比米版本慢得多,所以我认为这不是它的完成方式,并且它得到了完全不同的视觉结果。我要求的主要原因是计算效率,指定以米为单位的比例是否比以像素为单位的成本更高?
3.
Circle Kernel at 10m (px): Tile error: Output of image computation is too large (2 bands for 122013995 pixels = 1861.8 MiB > 80.0 MiB). If this is a reduction, try specifying a larger 'tileScale' parameter.
解决方案
半径为“3 像素”的内核在任何投影/比例中始终为 7x7“像素”,这将导致每个比例的米数不同。
半径为“300 米”的内核将使用覆盖 300 米所需的许多像素,当以 0.3m 的比例使用时,可能为 1000x1000 像素。
函数:
ee.Kernel.circle(radius, units, normalize, magnitude)
Generates a circle-shaped boolean kernel.
Arguments:
radius (Float):
The radius of the kernel to generate.
units (String, default: "pixels"):
The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed.
normalize (Boolean, default: true):
Normalize the kernel values to sum to 1.
magnitude (Float, default: 1):
Scale each value by this amount.
Returns: Kernel
convolve(kernel)
Convolves each band of an image with the given kernel.用给定的核卷积图像的每个波段。
Arguments:
this:image (Image):
The image to convolve.
kernel (Kernel):
The kernel to convolve with.
Returns: Image
代码:
//研究区和数据集 var imageCollection = ee.ImageCollection("COPERNICUS/S1_GRD"), geometry = /* color: #98ff00 */ /* shown: false */ /* displayProperties: [ { "type": "rectangle" } ] */ ee.Geometry.Polygon( [[[-3.4157601749762367, 56.09914841569624], [-3.4157601749762367, 55.81469755998435], [-2.8334847843512367, 55.81469755998435], [-2.8334847843512367, 56.09914841569624]]], null, false), geometry2 = /* color: #0b4a8b */ /* shown: false */ /* displayProperties: [ { "type": "rectangle" } ] */ ee.Geometry.Polygon( [[[-3.414419891474414, 56.01742307470684], [-3.414419891474414, 55.98877181348714], [-3.3768260499216796, 55.98877181348714], [-3.3768260499216796, 56.01742307470684]]], null, false); //数据过滤和筛选 var filtered = imageCollection .filterBounds(geometry) .filterDate("2023-01-01", "2023-01-31") //影像镶嵌和裁剪 var img = filtered .mean() .select([0, 1]) .clip(geometry) //选择坐标系 var proj = filtered.first().select(0).projection() //建立核函数 var circle_metres = ee.Kernel.circle({ radius: 100, units: "meters", magnitude: 2 }) // gsd 是 ~10 米,因此将其调整为 10 像素,以便与上述原生比例相当 var circle_pixels = ee.Kernel.circle({ radius: 10, units: "pixels", magnitude: 2 }) var circle_pixels_projected = ee.Kernel.circle({ radius: 10, units: "pixels", magnitude: 2 }) //按照核函数进行卷积 var img_m = img.convolve(circle_metres) var img_p = img.convolve(circle_pixels) var img_forced_res = img.convolve(circle_pixels_projected).reproject(proj.atScale(1)) var vis = { "min": -26, "max": 10, "bands": ["VV", "VH", "VV"] } Map.centerObject(geometry2) Map.addLayer(img, vis, "No Kernel Composite") Map.addLayer(img_m, vis, "Circle Kernel (m)") Map.addLayer(img_p, vis, "Circle Kernel (px)") Map.addLayer(img_forced_res, vis, "Circle Kernel at 10m (px)")