YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)

简介: YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)

一、本文介绍

本文给大家带来的改进机制是MobileNetV2,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。其在MobilNetV1的基础上采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2在性能上和精度上都要比V1版本强很多,其在多种应用(如对象检测、细粒度分类、面部属性识别和大规模地理定位)中都展现了一定的有效性。

image.png

适用检测目标:轻量化网络结构适合非常轻量化的读者,同时具有涨点效果

推荐指数:⭐⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、MobileNetV2的框架原理

image.png

2.1 MobileNetV2的基本原理

MobileNetV2是在MobileNetV1基础上提出来的,其不光具有V1的全部改进,还提出了采用反转残差结构和线性瓶颈层。这种结构通过轻量级的深度卷积和线性卷积过滤特征,同时去除狭窄层中的非线性,以维持表征能力。MobileNetV2通过这种设计提高了性能,并在多种任务和基准测试上表现出色。此外,它提出了一种新的框架SSDLite,用于移动设备上的目标检测,并展示了如何构建移动语义分割模型Mobile DeepLabv3。这种方法允许输入/输出域与变换的表达力解耦,为进一步分析提供了方便的框架。

MobileNetV2的主要创新点包括:

1. 反转残差结构:使用轻量级的深度卷积作为扩展层来提高特征过滤的效率。 2. 线性瓶颈层:在狭窄的层中去除非线性激活函数,以保持网络的表征能力。 3. SSDLite框架:用于移动设备上的高效目标检测,它是一种简化和优化的SSD框架。

2.1.1 反转残差结构

反转残差结构是MobileNetV2的关键特性,它采用轻量级的深度可分离卷积作为扩展层。这种结构首先使用1x1的卷积将输入特征图的通道数扩大,然后应用深度可分离卷积对这些扩展的特征图进行空间特征提取,最后再次通过1x1的卷积将通道数减少,恢复到原来的尺寸。这样的设计有效地提高了网络处理特征的效率,同时减少了参数数量和计算成本。通过这种方式,MobileNetV2能够在保持模型轻量的同时,提供足够的模型表现力,适用于移动和嵌入式设备上的高效计算。

image.png

上图展示了残差块和反转残差块之间的区别:

(a) 残差:传统的残差块通过直接连接输入和输出来促进特征的传递,通常包含具有高通道数的层和ReLU激活函数。 (b) 反转残差块:在反转残差块中,连接是在瓶颈层之间,即通道数较少的层,而且去除了非线性激活函数,以保持特征的表达力。这种设计通常首先用一个扩展层增加通道数,然后应用深度卷积处理特征,并且在最后一个线性层减少通道数。

2.1.2 线性瓶颈层

线性瓶颈层是MobileNetV2架构中的另一个关键特性。在这种结构中,传统的非线性激活函数被有意地从瓶颈层中去除。瓶颈层是指那些通道数较少的卷积层,它们位于扩展层和压缩层之间。这样做的目的是为了减少信息在通过狭窄层时的损失,因为非线性操作可能会破坏特征中的一些信息。通过保持这些层的线性,网络能够维持更丰富的特征表示,这对于提高模型的整体性能至关重要。

总结:就是在一些卷积层里面把激活函数删除掉了,类似于v5中的Bottleneck模块,将其中的激活函数删除掉。

2.1.3 SSDLite框架

SSDLite是一个轻量级的目标检测框架,专为移动设备优化。它是SSD框架的简化版本,通过使用深度可分离卷积替换SSD中的标准卷积,显著减少了计算量和模型的大小。SSDLite继承了SSD的单次检测机制,使得模型在进行目标检测时既高效又准确。这种设计使SSDLite非常适合在资源受限的设备上进行实时目标检测任务。

image.png

上图展示了可分离卷积块的演变。其中:

(a) 展示了常规的卷积。 (b) 展示了可分离卷积块,这种块首先使用深度卷积分别处理每个输入通道,然后用一个1x1的卷积组合这些特征。 (c) 展示了带有线性瓶颈的可分离卷积,它在瓶颈层中移除了非线性激活函数,以保持特征的表达力。 (d) 展示了带有扩展层的瓶颈结构,它使用一个扩展层放大特征空间,然后再用深度卷积和1x1卷积进行处理。

对角线阴影的纹理表示不包含非线性的层,最后的浅色层表示下一个块的开始。请注意,当堆叠时,2d和2c是等效的块。

目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
84 8
|
3月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
3月前
|
机器学习/深度学习 算法
神经网络的结构与功能
神经网络是一种广泛应用于机器学习和深度学习的模型,旨在模拟人类大脑的信息处理方式。它们由多层不同类型的节点或“神经元”组成,每层都有特定的功能和责任。
138 0
|
24天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
62 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
51 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
62 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。