【网络奇缘】——奈氏准则和香农定理从理论到实践一站式服务|计算机网络

简介: 【网络奇缘】——奈氏准则和香农定理从理论到实践一站式服务|计算机网络



失真 - 信号的变化

影响信号失真的因素:

  1. 噪声:在信号传输过程中,环境中存在的各种噪声,如电磁干扰、热噪声等,会导致信号失真。
  2. 频率衰减:在信号传输过程中,信号的频率会随着传输距离的增加而衰减,导致信号失真。
  3. 时延失真:在信号传输时,由于信号传播速度的限制,信号的到达时间可能会有一定的延迟,导致信号失真。
  4. 非线性失真:在信号传输过程中,由于传输介质的非线性特性,信号的波形可能会发生变形,导致信号失真。
  5. 多径传播:在无线通信中,信号在传输过程中可能经过多条路径到达接收端,不同路径的传播时间和衰减程度不同,导致信号失真。
  6. 多普勒效应:在移动通信中,由于移动终端和基站之间的相对运动,信号的频率会发生变化,导致信号失真。
  7. 编码和解码误差:在数字通信中,编码和解码过程中可能发生误差,导致信号失真。
  8. 传输介质的损耗:传输介质(如电缆、光纤等)自身的损耗也会导致信号失真。

最重要的四个因素是:码元传输速率,信号传输距离,噪声干扰 ,传输媒体质量前面三种影响因素是正向影响,即码元传输速率越大,影响失真的程度就越大,而最后一种是反向影响,即传输媒体质量越好,影响失真的程度就越小。


失真的一种现象:码间串扰

信号震动频率过,信号易衰减和损耗掉。

信号震动频率过,接收端难以识别信号波形,易发生码间串扰


信道带宽

最高频率和最低频率之差。 3300Hz - 300Hz = 3000Hz


码间串扰

接收端收到的信号波形失去了码元间清晰界限的现象。(传输速率过快)


奈氏准则

定义:

奈氏准则,是1924年奈奎斯特推导出的准则,是指在理想低通(无噪声,带宽受限【低于最高频率】)条件 下,为了避免码间串扰,码元的传输速率的上限值 ,极限码元传输速率为 2W Baud,W是信道带宽,单位是Hz。(只有奈氏准则香农定理的公式中带宽的单位是Hz!!

M是指离散电平数目,即共有几种码元;

W是理想低通信道①的带宽,单位为赫(Hz);

Baud是波特,是码元传输速率的单位,1波特为每秒传送1个码元.

每赫带宽的理想低通信道的最高码元传输速率是每秒2个码元.


奈氏准则概念及使用条件:

在理想低通(无噪声,带宽受限【低于最高频率】)条件下

传输速率 = 2Wlog2(V) b/s

W:带宽

V:码元个数   =    相位  X  振幅


奈氏准则相关例题:

例:在无噪声的情况下,若某通信链路的带宽为3KHz,采用4个相位,每个相位具有4种振幅的QAM调制技术,则该通信链路的最大数据传输率是多少?


奈氏准则的四条结论:

  1. 在任何信道中,码元传输的速率是有上限的。若传输速率超过此上限,就会出现严重的码间串扰问题,使接收端对码元的完全正确识别成为不可能。
  2. 信道的频带越宽(即能通过的信号高频分量越多),就可以用更高的速率进行码元的有效传输。
  3. 奈氏准则给出了码元传输速率限制,但并没有对信息传输速率给出限制
  4. 由于码元的传输速率受奈氏准则的制约,所以要提高数据的传输速率,就必须设法使每个码元能携带更多个比特的信息量,这就需要采用多元制的调制方法


香农定理:

香农定理概念及使用条件:

定义:

香农定律是关于信道容量的计算的一个经典定律,可以说是信息论的基础。在高斯白噪声背景下的连续信道的容量.


噪声存在于所有的电子设备和通信信道中。由于噪声随机产生,它的瞬时值有时会很大,因此噪声会使接收端对码元的判决产生错误

但是噪声的影响是相对的,若信号较强,那么噪声影响相对较小。因此,信噪比就很重要。

信噪比(dB)=信号的平均功率/噪声的平均功率,常记为S/N,并用分贝 (dB)作为度量单位,

题目给的条件信噪比含有单位---dB 则需要利用下面这个公式将它转换成(S/N)即:

噪声,带宽受限【低于最高频率】)条件下 --- 用香农定理


香农定理相关例题:

例:电话系统的典型参数是信道带宽为3000Hz,信噪比为30dB,则该系统最大数据传输速率是多少?


香农定理的五条结论:

  1. 信道的带宽或信道中的信噪比越大,则信息的极限传输速率就越高
  2. 一定的传输带宽和一定的信噪比,信息传输速率的上限就确定了
  3. 只要信息的传输速率低于信道的极限传输速率,就一定能找到某种方法来实现无差错的传输
  4. 香农定理得出的极限信息传输速率实际信道能达到的传输速率要比它低不少。
  5. 从香农定理可以看出,若信道带宽W或信噪比S/N没有上限(不可能),那么信道的极限信息传输速率也就没有上限.


📝总结:

若条件里面,即含数据传输的进制(一个码元携带的bit信息量),又含信噪比,则两个准则都要计算一遍它的数据传输速率,然后选择最小的那个数据传输速率(才是实际可达到的最大值)

Practice1:

二进制信号在信噪比为1023:1的4kHz信道上传输,最大的数据速率可达到多少?

Practice2:

二进制信号在信噪比为127:1的4kHz信道上传输,最大的数据速率可达到多少?

目录
相关文章
|
1月前
|
存储 安全 网络安全
云端防御策略:融合云服务与网络安全的未来之路
在数字化浪潮的推动下,企业纷纷转向云计算以获取灵活性、可扩展性和成本效益。然而,随之而来的是日益复杂的网络威胁,它们挑战着传统的安全边界。本文将探讨如何通过创新的云服务模型和先进的网络安全措施来构建一个既可靠又灵活的安全框架。我们将分析云计算环境中的关键安全挑战,并提出一系列针对性的策略来加强数据保护,确保业务连续性,并满足合规要求。
|
3天前
|
云安全 安全 网络安全
云端防御:云计算环境中的网络安全策略与实践
【4月更文挑战第27天】 在数字化浪潮中,云计算以其弹性、可扩展和成本效益等优势成为企业IT架构的核心。然而,随着云服务的广泛应用,数据安全和隐私保护问题也愈发凸显。本文深入探讨了云计算环境下的网络安全挑战,并提出了一系列创新的安全策略和最佳实践,旨在帮助企业构建更加安全可靠的云服务环境。
10 3
|
7天前
|
存储 监控 安全
云端防御战线:云计算环境下的网络安全策略与实践
【4月更文挑战第23天】在数字化转型的浪潮中,云计算已成为推动企业敏捷性、可扩展性和成本效率的关键因素。然而,随着数据和服务迁移至云端,传统的网络边界逐渐模糊,给网络安全带来了前所未有的挑战。本文探讨了在多租户云环境中维护信息安全的先进策略和技术,分析了云服务模型(IaaS, PaaS, SaaS)特有的安全风险,并提出了一系列针对性的安全措施和最佳实践。通过深入讨论身份与访问管理、数据加密、入侵检测系统以及合规性监控等关键技术,本文旨在为读者提供一套全面的云计算安全防护框架。
6 0
|
10天前
|
存储 安全 网络安全
云端防御策略:融合云服务与网络安全的未来之路
【4月更文挑战第20天】 随着企业数字化转型的加速,云计算已成为支撑现代业务架构的关键。然而,伴随其发展的网络安全威胁也不断演变,对信息安全提出更高要求。本文将深入探讨在动态云环境中实现网络安全防护的策略和技术,包括最新的加密技术、身份验证机制以及入侵检测系统等。通过分析当前云服务中的安全挑战,并结合前沿的网络安全技术,旨在为读者提供一个关于如何在享受云计算便利的同时保障数据安全的全面视角。
|
11天前
|
边缘计算 人工智能 监控
《计算机网络简易速速上手小册》第10章:未来网络技术趋势(2024 最新版)
《计算机网络简易速速上手小册》第10章:未来网络技术趋势(2024 最新版)
31 2
|
11天前
|
监控 负载均衡 算法
《计算机网络简易速速上手小册》第6章:网络性能优化(2024 最新版)
《计算机网络简易速速上手小册》第6章:网络性能优化(2024 最新版)
49 3
|
11天前
|
安全 网络安全 网络虚拟化
《计算机网络简易速速上手小册》第3章:计算机网络设备和工具(2024 最新版)
《计算机网络简易速速上手小册》第3章:计算机网络设备和工具(2024 最新版)
30 1
|
11天前
|
人工智能 监控 安全
构筑安全之盾:云计算环境下的网络安全策略与实践
【4月更文挑战第19天】 在数字化转型的浪潮中,云计算已成为企业IT架构的核心组成部分。然而,随着云服务使用的普及化,网络安全问题亦变得日益复杂和挑战性。本文将深入探讨如何在云计算环境中实施有效的网络安全策略,保障数据的安全性和完整性。我们将从云服务模型出发,分析不同服务模型下的安全威胁,并提出相应的防护措施。文章还将讨论信息安全管理的最佳实践,包括加密技术、身份验证、访问控制以及安全监控等方面,旨在为企业提供一套全面的云计算安全防护框架。
|
13天前
|
运维 安全 Cloud Native
安全访问服务边缘(SASE):网络新时代的安全与连接解决方案
SASE(安全访问服务边缘)是一种云基安全模型,结合了网络功能和安全策略,由Gartner在2019年提出。它强调身份驱动的私有网络、云原生架构和全面边缘支持,旨在解决传统WAN和安全方案的局限性,如高延迟和分散管理。SASE通过降低IT成本、提升安全响应和网络性能,应对数据分散、风险控制和访问速度等问题,适用于移动办公、多分支办公等场景。随着网络安全挑战的增加,SASE将在企业的数字化转型中扮演关键角色。
|
13天前
|
网络协议 Java API
深度剖析:Java网络编程中的TCP/IP与HTTP协议实践
【4月更文挑战第17天】Java网络编程重在TCP/IP和HTTP协议的应用。TCP提供可靠数据传输,通过Socket和ServerSocket实现;HTTP用于Web服务,常借助HttpURLConnection或Apache HttpClient。两者结合,构成网络服务基础。Java有多种高级API和框架(如Netty、Spring Boot)简化开发,助力高效、高并发的网络通信。