嵌入式C语言中if/else如何优化详解

简介: 嵌入式C语言中if/else如何优化详解

观点一(灵剑):

 

前期迭代懒得优化,来一个需求,加一个if,久而久之,就串成了一座金字塔。

当代码已经复杂到难以维护的程度之后,只能狠下心重构优化。那,有什么方案可以优雅的优化掉这些多余的if/else?

1. 提前 return

这是判断条件取反的做法,代码在逻辑表达上会更清晰,看下面代码:

if (condition) {
 // do something
}else{
  return xxx;
}

其实,每次看到上面这种代码,我都心里抓痒,完全可以先判断!condition,干掉 else。

if (!condition) {
  return xxx;
} 
// do something

2. 策略模式

有这么一种场景,根据不同的参数走不同的逻辑,其实这种场景很常见。最一般的实现:

if (strategy.equals("fast")) {
  // 快速执行
} else if (strategy.equals("normal")) {
  // 正常执行
} else if (strategy.equals("smooth")) {
  // 平滑执行
} else if (strategy.equals("slow")) {
  // 慢慢执行
}

看上面代码,有4种策略,有两种优化方案。

2.1 多态

interface Strategy {
  void run() throws Exception;
}
class FastStrategy implements Strategy {
    @Override
    void run() throws Exception     {
        // 快速执行逻辑
    }
}
class NormalStrategy implements Strategy {
    @Override
    void run() throws Exception     {
        // 正常执行逻辑
    }
}
class SmoothStrategy implements Strategy {
    @Override
    void run() throws Exception     {
        // 平滑执行逻辑
    }
}
class SlowStrategy implements Strategy {
    @Override
    void run() throws Exception     {
        // 慢速执行逻辑
    }
}

具体策略对象存放在一个Map中,优化后的实现

Strategy strategy = map.get(param);
strategy.run();

上面这种优化方案有一个弊端,为了能够快速拿到对应的策略实现,需要map对象来保存策略,当添加一个新策略的时候,还需要手动添加到map中,容易被忽略。

2.2 枚举

发现很多同学不知道在枚举中可以定义方法,这里定义一个表示状态的枚举,另外可以实现一个run方法。

public enum Status{
    NEW(0)     {
      @Override
      void run()         {
        //do something  
        }
    },
    RUNNABLE(1)     {
      @Override
       void run()         {
         //do something  
         }
    };
    public int statusCode;
    abstract void run();
    Status(int statusCode)    {
        this.statusCode = statusCode;
    }
}

重新定义策略枚举

public enum Strategy {
    FAST {
      @Override
      void run() {
        //do something  
      }
    },
    NORMAL {
      @Override
       void run() {
         //do something  
      }
    },
    SMOOTH {
      @Override
       void run() {
         //do something  
      }
    },
    SLOW {
      @Override
       void run() {
         //do something  
      }
    };
    abstract void run();
}

通过枚举优化之后的代码如下

Strategy strategy = Strategy.valueOf(param);
strategy.run();

3. 学会使用 Optional

Optional主要用于非空判断,由于是jdk8新特性,所以使用的不是特别多,但是用起来真的爽。

使用之前:

if (user == null) {
    //do action 1
}else{
    //do action2
}

如果登录用户为空,执行action1,否则执行action 2,使用Optional优化之后,让非空校验更加优雅,间接的减少if操作

Optional<User> userOptional = Optional.ofNullable(user);
userOptional.map(action1).orElse(action2);

4. 数组小技巧

来自google解释,这是一种编程模式,叫做表驱动法,本质是从表里查询信息来代替逻辑语句,比如有这么一个场景,通过月份来获取当月的天数,仅作为案例演示,数据并不严谨。

一般的实现:

int getDays(int month){
    if (month == 1)  return 31;
    if (month == 2)  return 29;
    if (month == 3)  return 31;
    if (month == 4)  return 30;
    if (month == 5)  return 31;
    if (month == 6)  return 30;
    if (month == 7)  return 31;
    if (month == 8)  return 31;
    if (month == 9)  return 30;
    if (month == 10)  return 31;
    if (month == 11)  return 30;
    if (month == 12)  return 31;
}

优化后的代码

int monthDays[12] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int getDays(int month){
    return monthDays[--month];
}

结束

if else 作为每种编程语言都不可或缺的条件语句,在编程时会大量的用到。一般建议嵌套不要超过三层,如果一段代码存在过多的if else嵌套,代码的可读性就会急速下降,后期维护难度也大大提高。

观点二(IT技术控):

不要去过度关注 if/else 的层数,而要关注接口语义是否足够清晰;单纯减少if/else的层数,然后拆出一堆do_logic1, do_logic2…这样的接口是毫无帮助的。

任何一个接口的执行过程都可以表示为:输入 + 内部状态 -> 输出这样的形式,我们分以下几种情况来讨论:

输入、内部状态、输出都很简单,但中间逻辑复杂。比如说一个精心优化过的数值计算程序,可能需要根据输入在不同的取值范围采取不同的策略,还有很多逻辑用来处理会引发问题(比如除0)的边界值,这种情况下 if/else 数量多是难以避免的。

根据步骤拆分出一些内部方法有一定帮助,但也不能完全解决问题。

这种情况下最好的做法是写一篇详细的文档,从最原始的数学模型开始,然后表明什么情况下采取什么样的计算策略,策略如何推导,知道得到代码中使用的具体形式,然后给整个方法加上注释附上文档地址,并且在每个分支的地方加上注释指明对应到文档中哪个公式。

这种情况下虽然方法很复杂,但是语义是清晰的,如果不修改实现的话理解语义就行了,如果要修改实现那么需要参考对照文档中的公式。

输入过于复杂,比如输入带有一堆不同的参数,或者有各种奇怪的flag,每个flag有不同作用。

这种情况下首先需要提高接口的抽象层次:如果接口有多个不同作用,需要拆分成不同接口;如果接口内部根据不同参数进不同分支,需要将这些参数和对应分支包在Adapter里,使用参数的地方改写成Adapter的接口,根据传入的Adapter类型不同进入不同的实现;如果接口内部有复杂的参数转换关系,需要改写成查找表。

这种情况下的主要问题是接口本身抽象的有问题,有更清晰的抽象之后,实现也自然没有那么多if/else了。

输出过于复杂,为了省事一个过程计算出了太多东西,又为了性能加了一堆flag控制是否计算之类。这种情况下需要果断将方法拆分成多个不同方法,每个方法只返回自己需要的内容。

如果不同计算之间有共用的内部结果呢?如果这个内部结果计算并不形成瓶颈,只要提取出内部方法然后在不同过程中分别调用即可;如果希望避免重复计算,可以增加一个额外的 cache 对象作为参数,cache内容对用户不透明,用户只保证相同输入使用同一个cache对象即可,在计算中将中间结果保存到cache中,下次计算前先检查有没有已经得到的结果,就可以避免重复计算了。

内部状态过于复杂。首先检查状态设置的是否合理,是不是有一些本来应该作为输入参数的东西被放到了内部状态中(比如用来隐式地在两个不同方法调用之间传递参数)?

其次,这些状态分别控制哪些方面,是否可以分组然后实现到不同的 StateManager里面?

第三,画出状态转移图,尝试将内部状态分成单层分支,然后分别实现到on_xxx_stat e这样的方法里面,然后通过单层的 switch 或者查找表来调用。

其实通常需要优化的都是整体接口抽象,而不是单个接口的实现,单个接口实现不清晰通常是因为接口实现和需求不同构造成的。

 

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
62 1
|
2月前
|
人工智能 安全 算法
基于C语言的嵌入式系统开发,涵盖嵌入式系统概述、C语言的优势、开发流程、关键技术、应用实例及面临的挑战与未来趋势。
本文深入探讨了基于C语言的嵌入式系统开发,涵盖嵌入式系统概述、C语言的优势、开发流程、关键技术、应用实例及面临的挑战与未来趋势。C语言因其高效、可移植、灵活及成熟度高等特点,在嵌入式系统开发中占据重要地位。文章还介绍了从系统需求分析到部署维护的完整开发流程,以及中断处理、内存管理等关键技术,并展望了嵌入式系统在物联网和人工智能领域的未来发展。
107 1
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
81 1
|
7月前
|
C语言
C语言实现2048小游戏---粤嵌GE6818嵌入式系统实训
C语言实现2048小游戏---粤嵌GE6818嵌入式系统实训
|
3月前
|
算法 搜索推荐 C语言
【C语言】冒泡排序+优化版
【C语言】冒泡排序+优化版
|
5月前
|
算法 IDE 程序员
C语言与嵌入式系统:嵌入式C编程基础。
C语言与嵌入式系统:嵌入式C编程基础。
102 0
|
7月前
|
存储 移动开发 C语言
技术心得记录:嵌入式开发中常用到的C语言库函数
技术心得记录:嵌入式开发中常用到的C语言库函数
77 1
|
7月前
|
C语言
C语言实现电子音乐相册---粤嵌GEC6818嵌入式系统实训
C语言实现电子音乐相册---粤嵌GEC6818嵌入式系统实训
|
7月前
|
机器学习/深度学习 搜索推荐 程序员
C语言实现个人通讯录(功能优化)-2
C语言实现个人通讯录(功能优化)
|
6月前
|
存储 编译器 定位技术
结构体数组在C语言中的应用与优化策略
结构体数组在C语言中的应用与优化策略

热门文章

最新文章