Pre
Java Review - Queue和Stack 源码解读
PriorityQueue 概述
Java Review - Queue和Stack 源码解读以Java ArrayDeque为例讲解了Stack和Queue,还有一种特殊的队列叫做PriorityQueue,即优先队列。
优先队列的作用是能保证每次取出的元素都是队列中权值最小的。
那大小关系如何评判呢? 元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器
PriorityQueue 继承关系
PriorityQueue通过用数组表示的小顶堆实现
- PriorityQueue实现了Queue接口,不允许放入null元素;
- 其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现
上图中我们给每个元素按照层序遍历的方式进行了编号, 会发现父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:
leftNo = parentNo*2+1 rightNo = parentNo*2+2 parentNo = (nodeNo-1)/2
通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。
时间复杂度
- peek()和element操作是常数时间,
- add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)
构造函数
private static final int DEFAULT_INITIAL_CAPACITY = 11; /** * The comparator, or null if priority queue uses elements' * natural ordering. */ private final Comparator<? super E> comparator; /** * Creates a {@code PriorityQueue} with the default initial * capacity (11) that orders its elements according to their * {@linkplain Comparable natural ordering}. */ public PriorityQueue() { this(DEFAULT_INITIAL_CAPACITY, null); } /** * Creates a {@code PriorityQueue} with the specified initial * capacity that orders its elements according to their * {@linkplain Comparable natural ordering}. * * @param initialCapacity the initial capacity for this priority queue * @throws IllegalArgumentException if {@code initialCapacity} is less * than 1 */ public PriorityQueue(int initialCapacity) { this(initialCapacity, null); } /** * Creates a {@code PriorityQueue} with the default initial capacity and * whose elements are ordered according to the specified comparator. * * @param comparator the comparator that will be used to order this * priority queue. If {@code null}, the {@linkplain Comparable * natural ordering} of the elements will be used. * @since 1.8 */ public PriorityQueue(Comparator<? super E> comparator) { this(DEFAULT_INITIAL_CAPACITY, comparator); } /** * Creates a {@code PriorityQueue} with the specified initial capacity * that orders its elements according to the specified comparator. * * @param initialCapacity the initial capacity for this priority queue * @param comparator the comparator that will be used to order this * priority queue. If {@code null}, the {@linkplain Comparable * natural ordering} of the elements will be used. * @throws IllegalArgumentException if {@code initialCapacity} is * less than 1 */ public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) { // Note: This restriction of at least one is not actually needed, // but continues for 1.5 compatibility if (initialCapacity < 1) throw new IllegalArgumentException(); this.queue = new Object[initialCapacity]; this.comparator = comparator; } /** * Creates a {@code PriorityQueue} containing the elements in the * specified collection. If the specified collection is an instance of * a {@link SortedSet} or is another {@code PriorityQueue}, this * priority queue will be ordered according to the same ordering. * Otherwise, this priority queue will be ordered according to the * {@linkplain Comparable natural ordering} of its elements. * * @param c the collection whose elements are to be placed * into this priority queue * @throws ClassCastException if elements of the specified collection * cannot be compared to one another according to the priority * queue's ordering * @throws NullPointerException if the specified collection or any * of its elements are null */ @SuppressWarnings("unchecked") public PriorityQueue(Collection<? extends E> c) { if (c instanceof SortedSet<?>) { SortedSet<? extends E> ss = (SortedSet<? extends E>) c; this.comparator = (Comparator<? super E>) ss.comparator(); initElementsFromCollection(ss); } else if (c instanceof PriorityQueue<?>) { PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c; this.comparator = (Comparator<? super E>) pq.comparator(); initFromPriorityQueue(pq); } else { this.comparator = null; initFromCollection(c); } } /** * Creates a {@code PriorityQueue} containing the elements in the * specified priority queue. This priority queue will be * ordered according to the same ordering as the given priority * queue. * * @param c the priority queue whose elements are to be placed * into this priority queue * @throws ClassCastException if elements of {@code c} cannot be * compared to one another according to {@code c}'s * ordering * @throws NullPointerException if the specified priority queue or any * of its elements are null */ @SuppressWarnings("unchecked") public PriorityQueue(PriorityQueue<? extends E> c) { this.comparator = (Comparator<? super E>) c.comparator(); initFromPriorityQueue(c); } /** * Creates a {@code PriorityQueue} containing the elements in the * specified sorted set. This priority queue will be ordered * according to the same ordering as the given sorted set. * * @param c the sorted set whose elements are to be placed * into this priority queue * @throws ClassCastException if elements of the specified sorted * set cannot be compared to one another according to the * sorted set's ordering * @throws NullPointerException if the specified sorted set or any * of its elements are null */ @SuppressWarnings("unchecked") public PriorityQueue(SortedSet<? extends E> c) { this.comparator = (Comparator<? super E>) c.comparator(); initElementsFromCollection(c); }
方法
add()和offer()
- add(E e)和offer(E e)的语义相同,都是向优先队列中插入元素,只是Queue接口规定二者对插入失败时的处理不同,前者在插入失败时抛出异常,后者则会返回false。
- 对于PriorityQueue这两个方法其实没什么差别。
新加入的元素可能会破坏小顶堆的性质,因此需要进行必要的调整。
//offer(E e) public boolean offer(E e) { if (e == null)//不允许放入null元素 throw new NullPointerException(); modCount++; int i = size; if (i >= queue.length) grow(i + 1);//自动扩容 size = i + 1; if (i == 0)//队列原来为空,这是插入的第一个元素 queue[0] = e; else siftUp(i, e);//调整 return true; }
如上,扩容函数grow()类似于ArrayList里的grow()函数,就是再申请一个更大的数组,并将原数组的元素复制过去 。
需要注意的是siftUp(int k, E x)方法,该方法用于插入元素x并维持堆的特性。
//siftUp() private void siftUp(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1;//parentNo = (nodeNo-1)/2 Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0)//调用比较器的比较方法 break; queue[k] = e; k = parent; } queue[k] = x; }
新加入的元素x可能会破坏小顶堆的性质,因此需要进行调整。调整的过程为 : 从k指定的位置开始,将x逐层与当前点的parent进行比较并交换,直到满足x >= queue[parent]为止。注意这里的比较可以是元素的自然顺序,也可以是依靠比较器的顺序。
element()和peek()
//peek() public E peek() { if (size == 0) return null; return (E) queue[0];//0下标处的那个元素就是最小的那个 }
- element()和peek()的语义完全相同,都是获取但不删除队首元素,也就是队列中权值最小的那个元素,二者唯一的区别是当方法失败时前者抛出异常,后者返回null。
- 根据小顶堆的性质,堆顶那个元素就是全局最小的那个;
- 由于堆用数组表示,根据下标关系,0下标处的那个元素既是堆顶元素。所以直接返回数组0下标处的那个元素即可。
remove()和poll()
- remove()和poll()方法的语义也完全相同,都是获取并删除队首元素,区别是当方法失败时前者抛出异常,后者返回null。
- 由于删除操作会改变队列的结构,为维护小顶堆的性质,需要进行必要的调整。
public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0];//0下标处的那个元素就是最小的那个 E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x);//调整 return result; }
- 先记录0下标处的元素,并用最后一个元素替换0下标位置的元素,之后调用siftDown()方法对堆进行调整,最后返回原来0下标处的那个元素(也就是最小的那个元素)。
- 重点是siftDown(int k, E x)方法,该方法的作用是从k指定的位置开始,将x逐层向下与当前点的左右孩子中较小的那个交换,直到x小于或等于左右孩子中的任何一个为止。
//siftDown() private void siftDown(int k, E x) { int half = size >>> 1; while (k < half) { //首先找到左右孩子中较小的那个,记录到c里,并用child记录其下标 int child = (k << 1) + 1;//leftNo = parentNo*2+1 Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) break; queue[k] = c;//然后用c取代原来的值 k = child; } queue[k] = x; }
remove(Object o)
- remove(Object o)方法用于删除队列中跟o相等的某一个元素(如果有多个相等,只删除一个),该方法不是Queue接口内的方法,而是Collection接口的方法。由于删除操作会改变队列结构,所以要进行调整;
- 又由于删除元素的位置可能是任意的,所以调整过程比其它函数稍加繁琐。具体来说,remove(Object o)可以分为2种情况: 1. 删除的是最后一个元素。直接删除即可,不需要调整。2. 删除的不是最后一个元素,从删除点开始以最后一个元素为参照调用一次siftDown()即可.
//remove(Object o) public boolean remove(Object o) { //通过遍历数组的方式找到第一个满足o.equals(queue[i])元素的下标 int i = indexOf(o); if (i == -1) return false; int s = --size; if (s == i) //情况1 queue[i] = null; else { E moved = (E) queue[s]; queue[s] = null; siftDown(i, moved);//情况2 ...... } return true; }