[中间件] 秒杀系统秒杀率提高300%?教你如何利用redis和rabbitmq 优化应用!

本文涉及的产品
云原生内存数据库 Tair,内存型 2GB
云数据库 Redis 版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: [中间件] 秒杀系统秒杀率提高300%?教你如何利用redis和rabbitmq 优化应用!

前言: 近年来,随着互联网的发展,电商越来越受到人们的欢迎,而秒杀活动也成为了电商中的一种重要营销手段。但是,秒杀活动对系统的性能、并发性和可用性提出了极高的要求,因此需要一些高效、可靠的技术来支持秒杀系统。本文将详细介绍redis和rabbitmq在秒杀系统中的作用,并提供相关的SpringBoot demo代码。


redis在秒杀系统中的作用

缓存

秒杀系统中,每秒可能会有成千上万的用户同时发起抢购请求。为了提高系统的并发性和响应速度,我们通常会采用缓存技术。redis是一种基于内存的缓存数据库,它提供了高速的读写能力和丰富的数据结构,是秒杀系统中的一种理想缓存方案。

在秒杀系统中,我们可以将商品库存信息、用户购买记录等数据存储在redis中,并通过redis提供的原子操作,如incr、decr、setnx等来保障操作的原子性和线程安全性。下面是一段使用redis模拟商品秒杀的demo代码:

@Component
public class SecKillService {
    @Autowired
    private RedisTemplate<String, String> redisTemplate;
    public boolean secKill(String itemId, String userId) {
        // 从redis中获取商品库存
        String stock = redisTemplate.opsForValue().get("stock:" + itemId);
        if (stock == null || Integer.parseInt(stock) <= 0) {
            return false;
        }
        // 库存减一
        Long result = redisTemplate.opsForValue().decrement("stock:" + itemId);
        if (result < 0) {
            redisTemplate.opsForValue().increment("stock:" + itemId);
            return false;
        }
        // 记录用户购买记录
        redisTemplate.opsForSet().add("user:" + userId + ":purchases", itemId);
        return true;
    }
}

在这个demo中,我们使用redis的incr、decr、setnx、add等命令来实现商品库存的管理和用户购买记录的记录。其中,incr和decr命令分别用于对库存进行原子性的加减操作,setnx命令用于限制并发抢购数量,add命令用于记录用户的购买记录。

限流

秒杀系统中,由于并发量过大,可能会造成系统崩溃。因此,我们需要对系统进行限流,确保系统稳定运行。redis提供了一些限流算法,如令牌桶算法和漏桶算法,可以限制请求的频率和数量,避免系统崩溃。下面是一个使用redis令牌桶算法实现请求限流的demo代码:

@Component
public class RateLimiter {
    @Autowired
    private RedisTemplate<String, String> redisTemplate;
    public boolean acquire(String key, int capacity, int rate) {
        String tokenCount = redisTemplate.opsForValue().get(key);
        if (tokenCount == null) {
            redisTemplate.opsForValue().set(key, String.valueOf(capacity));
            redisTemplate.expire(key, 1, TimeUnit.SECONDS);
            return true;
        }
        int count = Integer.parseInt(tokenCount);
        if (count <= 0) {
            return false;
        }
        redisTemplate.opsForValue().set(key, String.valueOf(count - 1));
        redisTemplate.expire(key, 1, TimeUnit.SECONDS);
        return true;
    }
}

在这个demo中,我们使用redis的set和get命令来实现令牌桶算法。每秒钟可以产生一定数量的令牌,用户需要从桶中获取令牌才能发起请求。当桶中没有令牌时,用户请求会被拒绝,从而实现请求限流的效果。

rabbitmq在秒杀系统中的作用

异步队列

在秒杀系统中,用户的请求需要经过多个服务层的处理,包括订单生成、库存更新、消息通知等。由于各个服务层的处理时间和并发量不同,如果同步处理所有请求,可能会导致系统崩溃或响应非常慢。因此,我们可以采用异步队列的方式来处理请求,将请求加入消息队列中,由队列中的消费者异步处理。

rabbitmq是一种高效、可靠的消息队列系统,支持多种消息传输模式和多种消息协议,是秒杀系统中的一种理想消息队列系统。

下面是一个使用rabbitmq实现异步消息队列的demo代码:

@Component
public class SecKillSender{
    @Autowired
    private RabbitTemplate rabbitTemplate;
    public void send(String itemId, String userId) {
        rabbitTemplate.convertAndSend("secKillExchange", "secKillRoutingKey", itemId + ":" + userId);
    }
}
@Component
@RabbitListener(queues = "secKillQueue")
public class SecKillReceiver {
    @Autowired
    private SecKillService secKillService;
    @RabbitHandler
    public void process(String message) {
        String[] values = message.split(":");
        String itemId = values[0];
        String userId = values[1];
        secKillService.secKill(itemId, userId);
    }
}

在这个demo中,我们使用rabbitmq实现了一个异步消息队列。发送者将用户请求加入消息队列,接收者从消息队列中获取请求并异步处理。通过这种方式,我们可以将请求的处理分散到多个服务层中,提高系统的并发性和性能。

总结

本文介绍了redis和rabbitmq在秒杀系统中的作用,并提供了相关的SpringBoot demo代码。在实际开发中,我们可以根据需求选择适合的缓存方案和消息队列系统,以提高系统的并发性和性能。

demo缺点

上述demo实现了一个秒杀系统,其中redis用于缓存商品信息和库存信息,rabbitmq用于异步处理订单。但是,这种实现方式仍然存在以下缺点:

1)高并发情况下,redis的性能不足以支持;当秒杀活动开始时,短时间内可能会有大量用户同时访问系统,而redis的性能会受到影响,从而导致请求超时、系统宕机等问题。

2)rabbitmq的消息堆积问题;当系统承受不住高并发的订单处理请求,rabbitmq队列中的消息将会堆积,导致系统负载过高,进而影响系统整体稳定性。

3)redis 的原子性操作


解决方案

针对上述问题,我们可以通过以下方式来优化redis和rabbitmq的应用:

1)使用redis集群;通过将redis分布在多个服务器节点上,可以提高redis的性能和可用性,从而支持更高的访问量。当其中的某个redis节点出现宕机,集群中的其他节点将自行接管其工作,确保系统的高可用性和稳定性。

2)使用rabbitmq集群;同理,使用rabbitmq集群可以提高其性能和可用性,从而避免消息的堆积问题。当其中的某个节点出现宕机时,集群中的其他节点将自动补位,确保系统的高可用性和稳定性。

3)使用分布式锁;在秒杀系统中,商品库存有限,需要使用分布式锁来保证多个用户并发下的订单处理的顺序性和正确性。目前主流的分布式锁实现方式有基于redis的RedLock、ZooKeeper等,可以根据具体场景选择最合适的实现方式。

4)使用消息队列异步处理订单;在高并发的情况下,同步处理订单容易导致系统负载过高,进而影响系统稳定性。因此,我们可以使用消息队列异步处理订单,通过rabbitmq将订单消息发送到队列中,由监听该队列的线程异步处理,提高系统的性能和稳定性。

5)使用 lua 脚本实现原子性操作


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
20天前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
79 2
|
15天前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
|
24天前
|
缓存 NoSQL Linux
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
【Azure Redis 缓存】Windows和Linux系统本地安装Redis, 加载dump.rdb中数据以及通过AOF日志文件追加数据
|
25天前
|
消息中间件 存储 负载均衡
"RabbitMQ集群大揭秘!让你的消息传递系统秒变超级英雄,轻松应对亿级并发挑战!"
【8月更文挑战第24天】RabbitMQ是一款基于AMQP的开源消息中间件,以其高可靠性、扩展性和易用性闻名。面对高并发和大数据挑战时,可通过构建集群提升性能。本文深入探讨RabbitMQ集群配置、工作原理,并提供示例代码。集群由多个通过网络连接的节点组成,共享消息队列,确保高可用性和负载均衡。搭建集群需准备多台服务器,安装Erlang和RabbitMQ,并确保节点间通信顺畅。核心步骤包括配置.erlang.cookie文件、使用rabbitmqctl命令加入集群。消息发布至任一节点时,通过集群机制同步至其他节点;消费者可从任一节点获取消息。
28 2
|
26天前
|
存储 缓存 NoSQL
Redis 7.0如何优化缓存命中率?
优化Redis缓存命中率的关键策略包括:合理设计键值结构以节省内存并提高查找效率,如使用哈希表存储共享前缀的键;采用LRU算法淘汰不常用键,保持热门数据;优化查询模式,避免大键与大量小键,使用`SCAN`代替`KEYS`减少负载;为临时数据设置过期时间自动清理;监控性能并适时调整策略;利用不同数据类型的优势;使用Pipeline减少网络延迟;限制键扫描范围;优化Lua脚本执行效率;以及根据应用场景合理配置Redis参数。这些方法有助于提升Redis性能和缓存效率。
|
27天前
|
Web App开发 前端开发 关系型数据库
基于SpringBoot+Vue+Redis+Mybatis的商城购物系统 【系统实现+系统源码+答辩PPT】
这篇文章介绍了一个基于SpringBoot+Vue+Redis+Mybatis技术栈开发的商城购物系统,包括系统功能、页面展示、前后端项目结构和核心代码,以及如何获取系统源码和答辩PPT的方法。
|
1月前
|
存储 NoSQL Java
使用redis进行手机验证码的验证、每天只能发送三次验证码 (redis安装在虚拟机linux系统中)
该博客文章展示了如何在Linux虚拟机上使用Redis和Jedis客户端实现手机验证码的验证功能,包括验证码的生成、存储、验证以及限制每天发送次数的逻辑,并提供了测试结果截图。
使用redis进行手机验证码的验证、每天只能发送三次验证码 (redis安装在虚拟机linux系统中)
|
17天前
|
存储 C# 关系型数据库
“云端融合:WPF应用无缝对接Azure与AWS——从Blob存储到RDS数据库,全面解析跨平台云服务集成的最佳实践”
【8月更文挑战第31天】本文探讨了如何将Windows Presentation Foundation(WPF)应用与Microsoft Azure和Amazon Web Services(AWS)两大主流云平台无缝集成。通过具体示例代码展示了如何利用Azure Blob Storage存储非结构化数据、Azure Cosmos DB进行分布式数据库操作;同时介绍了如何借助Amazon S3实现大规模数据存储及通过Amazon RDS简化数据库管理。这不仅提升了WPF应用的可扩展性和可用性,还降低了基础设施成本。
37 0
|
19天前
|
消息中间件 Java RocketMQ
微服务架构师的福音:深度解析Spring Cloud RocketMQ,打造高可靠消息驱动系统的不二之选!
【8月更文挑战第29天】Spring Cloud RocketMQ结合了Spring Cloud生态与RocketMQ消息中间件的优势,简化了RocketMQ在微服务中的集成,使开发者能更专注业务逻辑。通过配置依赖和连接信息,可轻松搭建消息生产和消费流程,支持消息过滤、转换及分布式事务等功能,确保微服务间解耦的同时,提升了系统的稳定性和效率。掌握其应用,有助于构建复杂分布式系统。
33 0
|
23天前
|
消息中间件 开发工具
【Azure Event Hub】原生应用中使用RabbitMQ,是否可以不改动代码的情况下直接转换为使用Event Hub呢?
【Azure Event Hub】原生应用中使用RabbitMQ,是否可以不改动代码的情况下直接转换为使用Event Hub呢?