☆打卡算法☆LeetCode 160. 相交链表 算法解析

简介: ☆打卡算法☆LeetCode 160. 相交链表 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定两个链表的头节点,找出并返回两个单链表相交的起始节点。”

2、题目描述

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

图示两个链表在节点 c1 开始相交:

1702376413667.jpg

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

自定义评测:

评测系统 的输入如下(你设计的程序 不适用 此输入):

  • intersectVal - 相交的起始节点的值。如果不存在相交节点,这一值为 0
  • listA - 第一个链表
  • listB - 第二个链表
  • skipA - 在 listA 中(从头节点开始)跳到交叉节点的节点数
  • skipB - 在 listB 中(从头节点开始)跳到交叉节点的节点数

评测系统将根据这些输入创建链式数据结构,并将两个头节点 headA 和 headB 传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案 。

1702376437893.jpg

示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at '8'
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
示例 2:
输入:intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at '2'
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [1,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

二、解题

1、思路分析

判断两个链表是否相交,可以使用哈希表存储链表节点。

首先,遍历链表A,将链表中的每个节点存到哈希表中。

然后遍历链表B,判断链表B中节点是否存在哈希表中。

存在就返回该节点,如果链表B所有节点都不在哈希表中,则返回null。

2、代码实现

代码参考:

public class Solution {
    public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
        Set<ListNode> visited = new HashSet<ListNode>();
        ListNode temp = headA;
        while (temp != null) {
            visited.add(temp);
            temp = temp.next;
        }
        temp = headB;
        while (temp != null) {
            if (visited.contains(temp)) {
                return temp;
            }
            temp = temp.next;
        }
        return null;
    }
}

1702376471982.jpg

3、时间复杂度

时间复杂度:O(m+n)

其中m喝n分别是链表A和链表B的长度,需要遍历两个链表一次。

空间复杂度:O(m)

其中m是链表A的长度,需要用哈希表存储链表A中的全部节点。

三、总结

如果两个链表相交,那么相交点之后的长度是相同的。

我们需要做的事情是,让两个链表从同距离末尾同等距离的位置开始遍历。

这个位置只能是较短链表的头结点位置。

相关文章
|
4月前
|
存储 算法 安全
如何控制上网行为——基于 C# 实现布隆过滤器算法的上网行为管控策略研究与实践解析
在数字化办公生态系统中,企业对员工网络行为的精细化管理已成为保障网络安全、提升组织效能的核心命题。如何在有效防范恶意网站访问、数据泄露风险的同时,避免过度管控对正常业务运作的负面影响,构成了企业网络安全领域的重要研究方向。在此背景下,数据结构与算法作为底层技术支撑,其重要性愈发凸显。本文将以布隆过滤器算法为研究对象,基于 C# 编程语言开展理论分析与工程实践,系统探讨该算法在企业上网行为管理中的应用范式。
126 8
|
4月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
83 4
|
5月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
117 2
|
3月前
|
机器学习/深度学习 算法
24. 两两交换链表中的节点, 19.删除链表的倒数第N个节点 ,面试题 02.07. 链表相交
1. **两两交换链表中的节点**:通过引入虚拟头结点,使所有节点都能采用统一的交换逻辑,避免对头结点单独处理。 2. **删除链表的倒数第N个节点**:利用双指针技巧,让快慢指针保持N个节点的距离,当快指针到达末尾时,慢指针正好指向待删除节点的前一个节点。 3. **链表相交**:先计算两链表长度并调整起点,确保从相同距离末尾的位置开始遍历,从而高效找到相交节点或确定无交点。 以上方法均在时间复杂度和空间复杂度上进行了优化,适合用于理解和掌握链表的基本操作及常见算法设计思路。
|
5月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
320 90
|
4月前
|
存储 监控 算法
内网监控桌面与 PHP 哈希算法:从数据追踪到行为审计的技术解析
本文探讨了内网监控桌面系统的技术需求与数据结构选型,重点分析了哈希算法在企业内网安全管理中的应用。通过PHP语言实现的SHA-256算法,可有效支持软件准入控制、数据传输审计及操作日志存证等功能。文章还介绍了性能优化策略(如分块哈希计算和并行处理)与安全增强措施(如盐值强化和动态更新),并展望了哈希算法在图像处理、网络流量分析等领域的扩展应用。最终强调了构建完整内网安全闭环的重要性,为企业数字资产保护提供技术支撑。
121 2
|
5月前
|
算法 Go
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
159 10
|
6月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
162 14
|
5月前
|
存储 监控 算法
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
103 7
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
103 4

热门文章

最新文章

推荐镜像

更多
  • DNS